\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra efupxs.spad} \author{Clifton J. Williamson} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package EFUPXS ElementaryFunctionsUnivariatePuiseuxSeries} <<package EFUPXS ElementaryFunctionsUnivariatePuiseuxSeries>>= )abbrev package EFUPXS ElementaryFunctionsUnivariatePuiseuxSeries ++ This package provides elementary functions on Puiseux series. ++ Author: Clifton J. Williamson ++ Date Created: 20 February 1990 ++ Date Last Updated: 20 February 1990 ++ Keywords: elementary function, Laurent series ++ Examples: ++ References: ElementaryFunctionsUnivariatePuiseuxSeries(Coef,ULS,UPXS,EFULS):_ Exports == Implementation where ++ This package provides elementary functions on any Laurent series ++ domain over a field which was constructed from a Taylor series ++ domain. These functions are implemented by calling the ++ corresponding functions on the Taylor series domain. We also ++ provide 'partial functions' which compute transcendental ++ functions of Laurent series when possible and return "failed" ++ when this is not possible. Coef : Algebra Fraction Integer ULS : UnivariateLaurentSeriesCategory Coef UPXS : UnivariatePuiseuxSeriesConstructorCategory(Coef,ULS) EFULS : PartialTranscendentalFunctions(ULS) I ==> Integer NNI ==> NonNegativeInteger RN ==> Fraction Integer Exports ==> PartialTranscendentalFunctions(UPXS) with if Coef has Field then **: (UPXS,RN) -> UPXS ++ z ** r raises a Puiseaux series z to a rational power r --% Exponentials and Logarithms exp: UPXS -> UPXS ++ exp(z) returns the exponential of a Puiseux series z. log: UPXS -> UPXS ++ log(z) returns the logarithm of a Puiseux series z. --% TrigonometricFunctionCategory sin: UPXS -> UPXS ++ sin(z) returns the sine of a Puiseux series z. cos: UPXS -> UPXS ++ cos(z) returns the cosine of a Puiseux series z. tan: UPXS -> UPXS ++ tan(z) returns the tangent of a Puiseux series z. cot: UPXS -> UPXS ++ cot(z) returns the cotangent of a Puiseux series z. sec: UPXS -> UPXS ++ sec(z) returns the secant of a Puiseux series z. csc: UPXS -> UPXS ++ csc(z) returns the cosecant of a Puiseux series z. --% ArcTrigonometricFunctionCategory asin: UPXS -> UPXS ++ asin(z) returns the arc-sine of a Puiseux series z. acos: UPXS -> UPXS ++ acos(z) returns the arc-cosine of a Puiseux series z. atan: UPXS -> UPXS ++ atan(z) returns the arc-tangent of a Puiseux series z. acot: UPXS -> UPXS ++ acot(z) returns the arc-cotangent of a Puiseux series z. asec: UPXS -> UPXS ++ asec(z) returns the arc-secant of a Puiseux series z. acsc: UPXS -> UPXS ++ acsc(z) returns the arc-cosecant of a Puiseux series z. --% HyperbolicFunctionCategory sinh: UPXS -> UPXS ++ sinh(z) returns the hyperbolic sine of a Puiseux series z. cosh: UPXS -> UPXS ++ cosh(z) returns the hyperbolic cosine of a Puiseux series z. tanh: UPXS -> UPXS ++ tanh(z) returns the hyperbolic tangent of a Puiseux series z. coth: UPXS -> UPXS ++ coth(z) returns the hyperbolic cotangent of a Puiseux series z. sech: UPXS -> UPXS ++ sech(z) returns the hyperbolic secant of a Puiseux series z. csch: UPXS -> UPXS ++ csch(z) returns the hyperbolic cosecant of a Puiseux series z. --% ArcHyperbolicFunctionCategory asinh: UPXS -> UPXS ++ asinh(z) returns the inverse hyperbolic sine of a Puiseux series z. acosh: UPXS -> UPXS ++ acosh(z) returns the inverse hyperbolic cosine of a Puiseux series z. atanh: UPXS -> UPXS ++ atanh(z) returns the inverse hyperbolic tangent of a Puiseux series z. acoth: UPXS -> UPXS ++ acoth(z) returns the inverse hyperbolic cotangent of a Puiseux series z. asech: UPXS -> UPXS ++ asech(z) returns the inverse hyperbolic secant of a Puiseux series z. acsch: UPXS -> UPXS ++ acsch(z) returns the inverse hyperbolic cosecant of a Puiseux series z. Implementation ==> add TRANSFCN : Boolean := Coef has TranscendentalFunctionCategory --% roots nthRootIfCan(upxs,n) == one? n => upxs r := rationalPower upxs; uls := laurentRep upxs deg := degree uls if zero?(coef := coefficient(uls,deg)) then deg := order(uls,deg + 1000) zero?(coef := coefficient(uls,deg)) => error "root of series with many leading zero coefficients" uls := uls * monomial(1,-deg)$ULS (ulsRoot := nthRootIfCan(uls,n)) case "failed" => "failed" puiseux(r,ulsRoot :: ULS) * monomial(1,deg * r * inv(n :: RN)) if Coef has Field then (upxs:UPXS) ** (q:RN) == num := numer q; den := denom q one? den => upxs ** num r := rationalPower upxs; uls := laurentRep upxs deg := degree uls if zero?(coef := coefficient(uls,deg)) then deg := order(uls,deg + 1000) zero?(coef := coefficient(uls,deg)) => error "power of series with many leading zero coefficients" ulsPow := (uls * monomial(1,-deg)$ULS) ** q puiseux(r,ulsPow) * monomial(1,deg*q*r) --% transcendental functions applyIfCan: (ULS -> Union(ULS,"failed"),UPXS) -> Union(UPXS,"failed") applyIfCan(fcn,upxs) == uls := fcn laurentRep upxs uls case "failed" => "failed" puiseux(rationalPower upxs,uls :: ULS) expIfCan upxs == applyIfCan(expIfCan,upxs) logIfCan upxs == applyIfCan(logIfCan,upxs) sinIfCan upxs == applyIfCan(sinIfCan,upxs) cosIfCan upxs == applyIfCan(cosIfCan,upxs) tanIfCan upxs == applyIfCan(tanIfCan,upxs) cotIfCan upxs == applyIfCan(cotIfCan,upxs) secIfCan upxs == applyIfCan(secIfCan,upxs) cscIfCan upxs == applyIfCan(cscIfCan,upxs) atanIfCan upxs == applyIfCan(atanIfCan,upxs) acotIfCan upxs == applyIfCan(acotIfCan,upxs) sinhIfCan upxs == applyIfCan(sinhIfCan,upxs) coshIfCan upxs == applyIfCan(coshIfCan,upxs) tanhIfCan upxs == applyIfCan(tanhIfCan,upxs) cothIfCan upxs == applyIfCan(cothIfCan,upxs) sechIfCan upxs == applyIfCan(sechIfCan,upxs) cschIfCan upxs == applyIfCan(cschIfCan,upxs) atanhIfCan upxs == applyIfCan(atanhIfCan,upxs) acothIfCan upxs == applyIfCan(acothIfCan,upxs) asinIfCan upxs == negative? order(upxs,0) => "failed" (coef := coefficient(upxs,0)) = 0 => integrate((1 - upxs*upxs)**(-1/2) * (differentiate upxs)) TRANSFCN => cc := asin(coef) :: UPXS cc + integrate((1 - upxs*upxs)**(-1/2) * (differentiate upxs)) "failed" acosIfCan upxs == negative? order(upxs,0) => "failed" TRANSFCN => cc := acos(coefficient(upxs,0)) :: UPXS cc + integrate(-(1 - upxs*upxs)**(-1/2) * (differentiate upxs)) "failed" asecIfCan upxs == negative? order(upxs,0) => "failed" TRANSFCN => cc := asec(coefficient(upxs,0)) :: UPXS f := (upxs*upxs - 1)**(-1/2) * (differentiate upxs) (rec := recip upxs) case "failed" => "failed" cc + integrate(f * (rec :: UPXS)) "failed" acscIfCan upxs == negative? order(upxs,0) => "failed" TRANSFCN => cc := acsc(coefficient(upxs,0)) :: UPXS f := -(upxs*upxs - 1)**(-1/2) * (differentiate upxs) (rec := recip upxs) case "failed" => "failed" cc + integrate(f * (rec :: UPXS)) "failed" asinhIfCan upxs == negative? order(upxs,0) => "failed" TRANSFCN or (coefficient(upxs,0) = 0) => log(upxs + (1 + upxs*upxs)**(1/2)) "failed" acoshIfCan upxs == TRANSFCN => negative? order(upxs,0) => "failed" log(upxs + (upxs*upxs - 1)**(1/2)) "failed" asechIfCan upxs == TRANSFCN => negative? order(upxs,0) => "failed" (rec := recip upxs) case "failed" => "failed" log((1 + (1 - upxs*upxs)*(1/2)) * (rec :: UPXS)) "failed" acschIfCan upxs == TRANSFCN => negative? order(upxs,0) => "failed" (rec := recip upxs) case "failed" => "failed" log((1 + (1 + upxs*upxs)*(1/2)) * (rec :: UPXS)) "failed" applyOrError:(UPXS -> Union(UPXS,"failed"),String,UPXS) -> UPXS applyOrError(fcn,name,upxs) == ans := fcn upxs ans case "failed" => error concat(name," of function with singularity") ans :: UPXS exp upxs == applyOrError(expIfCan,"exp",upxs) log upxs == applyOrError(logIfCan,"log",upxs) sin upxs == applyOrError(sinIfCan,"sin",upxs) cos upxs == applyOrError(cosIfCan,"cos",upxs) tan upxs == applyOrError(tanIfCan,"tan",upxs) cot upxs == applyOrError(cotIfCan,"cot",upxs) sec upxs == applyOrError(secIfCan,"sec",upxs) csc upxs == applyOrError(cscIfCan,"csc",upxs) asin upxs == applyOrError(asinIfCan,"asin",upxs) acos upxs == applyOrError(acosIfCan,"acos",upxs) atan upxs == applyOrError(atanIfCan,"atan",upxs) acot upxs == applyOrError(acotIfCan,"acot",upxs) asec upxs == applyOrError(asecIfCan,"asec",upxs) acsc upxs == applyOrError(acscIfCan,"acsc",upxs) sinh upxs == applyOrError(sinhIfCan,"sinh",upxs) cosh upxs == applyOrError(coshIfCan,"cosh",upxs) tanh upxs == applyOrError(tanhIfCan,"tanh",upxs) coth upxs == applyOrError(cothIfCan,"coth",upxs) sech upxs == applyOrError(sechIfCan,"sech",upxs) csch upxs == applyOrError(cschIfCan,"csch",upxs) asinh upxs == applyOrError(asinhIfCan,"asinh",upxs) acosh upxs == applyOrError(acoshIfCan,"acosh",upxs) atanh upxs == applyOrError(atanhIfCan,"atanh",upxs) acoth upxs == applyOrError(acothIfCan,"acoth",upxs) asech upxs == applyOrError(asechIfCan,"asech",upxs) acsch upxs == applyOrError(acschIfCan,"acsch",upxs) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package EFUPXS ElementaryFunctionsUnivariatePuiseuxSeries>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}