\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra efuls.spad} \author{Clifton J. Williamson} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package EFULS ElementaryFunctionsUnivariateLaurentSeries} <<package EFULS ElementaryFunctionsUnivariateLaurentSeries>>= )abbrev package EFULS ElementaryFunctionsUnivariateLaurentSeries ++ This package provides elementary functions on Laurent series. ++ Author: Clifton J. Williamson ++ Date Created: 6 February 1990 ++ Date Last Updated: 25 February 1990 ++ Keywords: elementary function, Laurent series ++ Examples: ++ References: ElementaryFunctionsUnivariateLaurentSeries(Coef,UTS,ULS):_ Exports == Implementation where ++ This package provides elementary functions on any Laurent series ++ domain over a field which was constructed from a Taylor series ++ domain. These functions are implemented by calling the ++ corresponding functions on the Taylor series domain. We also ++ provide 'partial functions' which compute transcendental ++ functions of Laurent series when possible and return "failed" ++ when this is not possible. Coef : Algebra Fraction Integer UTS : UnivariateTaylorSeriesCategory Coef ULS : UnivariateLaurentSeriesConstructorCategory(Coef,UTS) I ==> Integer NNI ==> NonNegativeInteger RN ==> Fraction Integer S ==> String STTF ==> StreamTranscendentalFunctions(Coef) Exports ==> PartialTranscendentalFunctions(ULS) with if Coef has Field then "**": (ULS,RN) -> ULS ++ s ** r raises a Laurent series s to a rational power r --% Exponentials and Logarithms exp: ULS -> ULS ++ exp(z) returns the exponential of Laurent series z. log: ULS -> ULS ++ log(z) returns the logarithm of Laurent series z. --% TrigonometricFunctionCategory sin: ULS -> ULS ++ sin(z) returns the sine of Laurent series z. cos: ULS -> ULS ++ cos(z) returns the cosine of Laurent series z. tan: ULS -> ULS ++ tan(z) returns the tangent of Laurent series z. cot: ULS -> ULS ++ cot(z) returns the cotangent of Laurent series z. sec: ULS -> ULS ++ sec(z) returns the secant of Laurent series z. csc: ULS -> ULS ++ csc(z) returns the cosecant of Laurent series z. --% ArcTrigonometricFunctionCategory asin: ULS -> ULS ++ asin(z) returns the arc-sine of Laurent series z. acos: ULS -> ULS ++ acos(z) returns the arc-cosine of Laurent series z. atan: ULS -> ULS ++ atan(z) returns the arc-tangent of Laurent series z. acot: ULS -> ULS ++ acot(z) returns the arc-cotangent of Laurent series z. asec: ULS -> ULS ++ asec(z) returns the arc-secant of Laurent series z. acsc: ULS -> ULS ++ acsc(z) returns the arc-cosecant of Laurent series z. --% HyperbolicFunctionCategory sinh: ULS -> ULS ++ sinh(z) returns the hyperbolic sine of Laurent series z. cosh: ULS -> ULS ++ cosh(z) returns the hyperbolic cosine of Laurent series z. tanh: ULS -> ULS ++ tanh(z) returns the hyperbolic tangent of Laurent series z. coth: ULS -> ULS ++ coth(z) returns the hyperbolic cotangent of Laurent series z. sech: ULS -> ULS ++ sech(z) returns the hyperbolic secant of Laurent series z. csch: ULS -> ULS ++ csch(z) returns the hyperbolic cosecant of Laurent series z. --% ArcHyperbolicFunctionCategory asinh: ULS -> ULS ++ asinh(z) returns the inverse hyperbolic sine of Laurent series z. acosh: ULS -> ULS ++ acosh(z) returns the inverse hyperbolic cosine of Laurent series z. atanh: ULS -> ULS ++ atanh(z) returns the inverse hyperbolic tangent of Laurent series z. acoth: ULS -> ULS ++ acoth(z) returns the inverse hyperbolic cotangent of Laurent series z. asech: ULS -> ULS ++ asech(z) returns the inverse hyperbolic secant of Laurent series z. acsch: ULS -> ULS ++ acsch(z) returns the inverse hyperbolic cosecant of Laurent series z. Implementation ==> add --% roots RATPOWERS : Boolean := Coef has "**":(Coef,RN) -> Coef TRANSFCN : Boolean := Coef has TranscendentalFunctionCategory RATS : Boolean := Coef has retractIfCan: Coef -> Union(RN,"failed") nthRootUTS:(UTS,I) -> Union(UTS,"failed") nthRootUTS(uts,n) == -- assumed: n > 1, uts has non-zero constant term -- one? coefficient(uts,0) => uts ** inv(n::RN) coefficient(uts,0) = 1 => uts ** inv(n::RN) RATPOWERS => uts ** inv(n::RN) "failed" nthRootIfCan(uls,nn) == (n := nn :: I) < 1 => error "nthRootIfCan: n must be positive" n = 1 => uls deg := degree uls if zero? (coef := coefficient(uls,deg)) then uls := removeZeroes(1000,uls); deg := degree uls zero? (coef := coefficient(uls,deg)) => error "root of series with many leading zero coefficients" (k := deg exquo n) case "failed" => "failed" uts := taylor(uls * monomial(1,-deg)) (root := nthRootUTS(uts,n)) case "failed" => "failed" monomial(1,k :: I) * (root :: UTS :: ULS) if Coef has Field then (uls:ULS) ** (r:RN) == num := numer r; den := denom r -- one? den => uls ** num den = 1 => uls ** num deg := degree uls if zero? (coef := coefficient(uls,deg)) then uls := removeZeroes(1000,uls); deg := degree uls zero? (coef := coefficient(uls,deg)) => error "power of series with many leading zero coefficients" (k := deg exquo den) case "failed" => error "**: rational power does not exist" uts := taylor(uls * monomial(1,-deg)) ** r monomial(1,(k :: I) * num) * (uts :: ULS) --% transcendental functions applyIfCan: (UTS -> UTS,ULS) -> Union(ULS,"failed") applyIfCan(fcn,uls) == uts := taylorIfCan uls uts case "failed" => "failed" fcn(uts :: UTS) :: ULS expIfCan uls == applyIfCan(exp,uls) sinIfCan uls == applyIfCan(sin,uls) cosIfCan uls == applyIfCan(cos,uls) asinIfCan uls == applyIfCan(asin,uls) acosIfCan uls == applyIfCan(acos,uls) asecIfCan uls == applyIfCan(asec,uls) acscIfCan uls == applyIfCan(acsc,uls) sinhIfCan uls == applyIfCan(sinh,uls) coshIfCan uls == applyIfCan(cosh,uls) asinhIfCan uls == applyIfCan(asinh,uls) acoshIfCan uls == applyIfCan(acosh,uls) atanhIfCan uls == applyIfCan(atanh,uls) acothIfCan uls == applyIfCan(acoth,uls) asechIfCan uls == applyIfCan(asech,uls) acschIfCan uls == applyIfCan(acsch,uls) logIfCan uls == uts := taylorIfCan uls uts case "failed" => "failed" zero? coefficient(ts := uts :: UTS,0) => "failed" log(ts) :: ULS tanIfCan uls == -- don't call 'tan' on a UTS (tan(uls) may have a singularity) uts := taylorIfCan uls uts case "failed" => "failed" sc := sincos(coefficients(uts :: UTS))$STTF (cosInv := recip(series(sc.cos) :: ULS)) case "failed" => "failed" (series(sc.sin) :: ULS) * (cosInv :: ULS) cotIfCan uls == -- don't call 'cot' on a UTS (cot(uls) may have a singularity) uts := taylorIfCan uls uts case "failed" => "failed" sc := sincos(coefficients(uts :: UTS))$STTF (sinInv := recip(series(sc.sin) :: ULS)) case "failed" => "failed" (series(sc.cos) :: ULS) * (sinInv :: ULS) secIfCan uls == cos := cosIfCan uls cos case "failed" => "failed" (cosInv := recip(cos :: ULS)) case "failed" => "failed" cosInv :: ULS cscIfCan uls == sin := sinIfCan uls sin case "failed" => "failed" (sinInv := recip(sin :: ULS)) case "failed" => "failed" sinInv :: ULS atanIfCan uls == coef := coefficient(uls,0) (ord := order(uls,0)) = 0 and coef * coef = -1 => "failed" cc : Coef := ord < 0 => TRANSFCN => RATS => lc := coefficient(uls,ord) (rat := retractIfCan(lc)@Union(RN,"failed")) case "failed" => (1/2) * pi() (rat :: RN) > 0 => (1/2) * pi() (-1/2) * pi() (1/2) * pi() return "failed" coef = 0 => 0 TRANSFCN => atan coef return "failed" (z := recip(1 + uls*uls)) case "failed" => "failed" (cc :: ULS) + integrate(differentiate(uls) * (z :: ULS)) acotIfCan uls == coef := coefficient(uls,0) (ord := order(uls,0)) = 0 and coef * coef = -1 => "failed" cc : Coef := ord < 0 => RATS => lc := coefficient(uls,ord) (rat := retractIfCan(lc)@Union(RN,"failed")) case "failed" => 0 (rat :: RN) > 0 => 0 TRANSFCN => pi() return "failed" 0 TRANSFCN => acot coef return "failed" (z := recip(1 + uls*uls)) case "failed" => "failed" (cc :: ULS) - integrate(differentiate(uls) * (z :: ULS)) tanhIfCan uls == -- don't call 'tanh' on a UTS (tanh(uls) may have a singularity) uts := taylorIfCan uls uts case "failed" => "failed" sc := sinhcosh(coefficients(uts :: UTS))$STTF (coshInv := recip(series(sc.cosh) :: ULS)) case "failed" => "failed" (series(sc.sinh) :: ULS) * (coshInv :: ULS) cothIfCan uls == -- don't call 'coth' on a UTS (coth(uls) may have a singularity) uts := taylorIfCan uls uts case "failed" => "failed" sc := sinhcosh(coefficients(uts :: UTS))$STTF (sinhInv := recip(series(sc.sinh) :: ULS)) case "failed" => "failed" (series(sc.cosh) :: ULS) * (sinhInv :: ULS) sechIfCan uls == cosh := coshIfCan uls cosh case "failed" => "failed" (coshInv := recip(cosh :: ULS)) case "failed" => "failed" coshInv :: ULS cschIfCan uls == sinh := sinhIfCan uls sinh case "failed" => "failed" (sinhInv := recip(sinh :: ULS)) case "failed" => "failed" sinhInv :: ULS applyOrError:(ULS -> Union(ULS,"failed"),S,ULS) -> ULS applyOrError(fcn,name,uls) == ans := fcn uls ans case "failed" => error concat(name," of function with singularity") ans :: ULS exp uls == applyOrError(expIfCan,"exp",uls) log uls == applyOrError(logIfCan,"log",uls) sin uls == applyOrError(sinIfCan,"sin",uls) cos uls == applyOrError(cosIfCan,"cos",uls) tan uls == applyOrError(tanIfCan,"tan",uls) cot uls == applyOrError(cotIfCan,"cot",uls) sec uls == applyOrError(secIfCan,"sec",uls) csc uls == applyOrError(cscIfCan,"csc",uls) asin uls == applyOrError(asinIfCan,"asin",uls) acos uls == applyOrError(acosIfCan,"acos",uls) asec uls == applyOrError(asecIfCan,"asec",uls) acsc uls == applyOrError(acscIfCan,"acsc",uls) sinh uls == applyOrError(sinhIfCan,"sinh",uls) cosh uls == applyOrError(coshIfCan,"cosh",uls) tanh uls == applyOrError(tanhIfCan,"tanh",uls) coth uls == applyOrError(cothIfCan,"coth",uls) sech uls == applyOrError(sechIfCan,"sech",uls) csch uls == applyOrError(cschIfCan,"csch",uls) asinh uls == applyOrError(asinhIfCan,"asinh",uls) acosh uls == applyOrError(acoshIfCan,"acosh",uls) atanh uls == applyOrError(atanhIfCan,"atanh",uls) acoth uls == applyOrError(acothIfCan,"acoth",uls) asech uls == applyOrError(asechIfCan,"asech",uls) acsch uls == applyOrError(acschIfCan,"acsch",uls) atan uls == -- code is duplicated so that correct error messages will be returned coef := coefficient(uls,0) (ord := order(uls,0)) = 0 and coef * coef = -1 => error "atan: series expansion has logarithmic term" cc : Coef := ord < 0 => TRANSFCN => RATS => lc := coefficient(uls,ord) (rat := retractIfCan(lc)@Union(RN,"failed")) case "failed" => (1/2) * pi() (rat :: RN) > 0 => (1/2) * pi() (-1/2) * pi() (1/2) * pi() error "atan: series expansion involves transcendental constants" coef = 0 => 0 TRANSFCN => atan coef error "atan: series expansion involves transcendental constants" (z := recip(1 + uls*uls)) case "failed" => error "atan: leading coefficient not invertible" (cc :: ULS) + integrate(differentiate(uls) * (z :: ULS)) acot uls == -- code is duplicated so that correct error messages will be returned coef := coefficient(uls,0) (ord := order(uls,0)) = 0 and coef * coef = -1 => error "acot: series expansion has logarithmic term" cc : Coef := ord < 0 => RATS => lc := coefficient(uls,ord) (rat := retractIfCan(lc)@Union(RN,"failed")) case "failed" => 0 (rat :: RN) > 0 => 0 TRANSFCN => pi() error "acot: series expansion involves transcendental constants" 0 TRANSFCN => acot coef error "acot: series expansion involves transcendental constants" (z := recip(1 + uls*uls)) case "failed" => error "acot: leading coefficient not invertible" (cc :: ULS) - integrate(differentiate(uls) * (z :: ULS)) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package EFULS ElementaryFunctionsUnivariateLaurentSeries>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}