\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra efstruc.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package SYMFUNC SymmetricFunctions}
<<package SYMFUNC SymmetricFunctions>>=
)abbrev package SYMFUNC SymmetricFunctions
++ The elementary symmetric functions
++ Author: Manuel Bronstein
++ Date Created: 13 Feb 1989
++ Date Last Updated: 28 Jun 1990
++ Description: Computes all the symmetric functions in n variables.
SymmetricFunctions(R:Ring): Exports == Implementation where
  UP  ==> SparseUnivariatePolynomial R

  Exports ==> with
    symFunc: List R  -> Vector R
      ++ symFunc([r1,...,rn]) returns the vector of the
      ++ elementary symmetric functions in the \spad{ri's}:
      ++ \spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}.
    symFunc: (R, PositiveInteger) -> Vector R
      ++ symFunc(r, n) returns the vector of the elementary
      ++ symmetric functions in \spad{[r,r,...,r]} \spad{n} times.

  Implementation ==> add
    signFix: (UP, NonNegativeInteger) -> Vector R

    symFunc(x, n) == signFix((monomial(1, 1)$UP - x::UP) ** n, 1 + n)

    symFunc l ==
      signFix(*/[monomial(1, 1)$UP - a::UP for a in l], 1 + #l)

    signFix(p, n) ==
      m := minIndex(v := vectorise(p, n)) + 1
      for i in 0..((#v quo 2) - 1)::NonNegativeInteger repeat
        qsetelt!(v, 2*i + m, - qelt(v, 2*i + m))
      reverse! v

@
\section{package TANEXP TangentExpansions}
<<package TANEXP TangentExpansions>>=
)abbrev package TANEXP TangentExpansions
++ Expansions of tangents of sums and quotients
++ Author: Manuel Bronstein
++ Date Created: 13 Feb 1989
++ Date Last Updated: 20 Apr 1990
++ Description: Expands tangents of sums and scalar products.
TangentExpansions(R:Field): Exports == Implementation where
  PI ==> PositiveInteger
  Z  ==> Integer
  UP ==> SparseUnivariatePolynomial R
  QF ==> Fraction UP

  Exports ==> with
    tanSum: List R -> R
      ++ tanSum([a1,...,an]) returns \spad{f(a1,...,an)} such that
      ++ if \spad{ai = tan(ui)} then \spad{f(a1,...,an) = tan(u1 + ... + un)}.
    tanAn : (R, PI) -> UP
      ++ tanAn(a, n) returns \spad{P(x)} such that
      ++ if \spad{a = tan(u)} then \spad{P(tan(u/n)) = 0}.
    tanNa : (R,  Z) -> R
      ++ tanNa(a, n) returns \spad{f(a)} such that
      ++ if \spad{a = tan(u)} then \spad{f(a) = tan(n * u)}.

  Implementation ==> add
    import SymmetricFunctions(R)
    import SymmetricFunctions(UP)

    m1toN : Integer -> Integer
    tanPIa: PI -> QF

    m1toN n     == (odd? n => -1; 1)
    tanAn(a, n) == a * denom(q := tanPIa n) - numer q

    tanNa(a, n) ==
      zero? n => 0
      negative? n => - tanNa(a, -n)
      (numer(t := tanPIa(n::PI)) a) / ((denom t) a)

    tanSum l ==
      m := minIndex(v := symFunc l)
      +/[m1toN(i+1) * v(2*i - 1 + m) for i in 1..(#v quo 2)]
        / +/[m1toN(i) * v(2*i + m) for i in 0..((#v - 1) quo 2)]

-- tanPIa(n) returns P(a)/Q(a) such that
-- if a = tan(u) then P(a)/Q(a) = tan(n * u);
    tanPIa n ==
      m := minIndex(v := symFunc(monomial(1, 1)$UP, n))
      +/[m1toN(i+1) * v(2*i - 1 + m) for i in 1..(#v quo 2)]
        / +/[m1toN(i) * v(2*i + m) for i in 0..((#v - 1) quo 2)]

@
\section{package EFSTRUC ElementaryFunctionStructurePackage}
<<package EFSTRUC ElementaryFunctionStructurePackage>>=
)abbrev package EFSTRUC ElementaryFunctionStructurePackage
++ Risch structure theorem
++ Author: Manuel Bronstein
++ Date Created: 1987
++ Date Last Updated: 16 August 1995
++ Description:
++   ElementaryFunctionStructurePackage provides functions to test the
++   algebraic independence of various elementary functions, using the
++   Risch structure theorem (real and complex versions).
++   It also provides transformations on elementary functions
++   which are not considered simplifications.
++ Keywords: elementary, function, structure.
ElementaryFunctionStructurePackage(R,F): Exports == Implementation where
  R : Join(IntegralDomain, RetractableTo Integer,
           LinearlyExplicitRingOver Integer)
  F : Join(AlgebraicallyClosedField, TranscendentalFunctionCategory,
           FunctionSpace R)

  B   ==> Boolean
  N   ==> NonNegativeInteger
  Z   ==> Integer
  Q   ==> Fraction Z
  SY  ==> Symbol
  K   ==> Kernel F
  UP  ==> SparseUnivariatePolynomial F
  SMP ==> SparseMultivariatePolynomial(R, K)
  REC ==> Record(func:F, kers: List K, vals:List F)
  U   ==> Union(vec:Vector Q, func:F, fail: Boolean)

  Exports ==> with
    normalize: F -> F
      ++ normalize(f) rewrites \spad{f} using the least possible number of
      ++ real algebraically independent kernels.
    normalize: (F, SY) -> F
      ++ normalize(f, x) rewrites \spad{f} using the least possible number of
      ++ real algebraically independent kernels involving \spad{x}.
    rischNormalize: (F, SY) -> REC
      ++ rischNormalize(f, x) returns \spad{[g, [k1,...,kn], [h1,...,hn]]}
      ++ such that \spad{g = normalize(f, x)} and each \spad{ki} was
      ++ rewritten as \spad{hi} during the normalization.
    realElementary: F -> F
      ++ realElementary(f) rewrites \spad{f} in terms of the 4 fundamental real
      ++ transcendental elementary functions: \spad{log, exp, tan, atan}.
    realElementary: (F, SY) -> F
      ++ realElementary(f,x) rewrites the kernels of \spad{f} involving \spad{x}
      ++ in terms of the 4 fundamental real
      ++ transcendental elementary functions: \spad{log, exp, tan, atan}.
    validExponential: (List K, F, SY) -> Union(F, "failed")
      ++ validExponential([k1,...,kn],f,x) returns \spad{g} if \spad{exp(f)=g}
      ++ and \spad{g} involves only \spad{k1...kn}, and "failed" otherwise.
    rootNormalize: (F, K) -> F
      ++ rootNormalize(f, k) returns \spad{f} rewriting either \spad{k} which
      ++ must be an nth-root in terms of radicals already in \spad{f}, or some
      ++ radicals in \spad{f} in terms of \spad{k}.
    tanQ: (Q, F) -> F
      ++ tanQ(q,a) is a local function with a conditional implementation.

  Implementation ==> add
    macro POWER == '%power
    macro NTHR  == 'nthRoot
    import TangentExpansions F
    import IntegrationTools(R, F)
    import IntegerLinearDependence F
    import AlgebraicManipulations(R, F)
    import InnerCommonDenominator(Z, Q, Vector Z, Vector Q)

    k2Elem             : (K, List SY) -> F
    realElem           : (F, List SY) -> F
    smpElem            : (SMP, List SY) -> F
    deprel             : (List K, K, SY) -> U
    rootDep            : (List K, K)     -> U
    qdeprel            : (List F, F)     -> U
    factdeprel         : (List K, K)     -> U
    toR                : (List K, F) -> List K
    toY                : List K -> List F
    toZ                : List K -> List F
    toU                : List K -> List F
    toV                : List K -> List F
    ktoY               : K  -> F
    ktoZ               : K  -> F
    ktoU               : K  -> F
    ktoV               : K  -> F
    gdCoef?            : (Q, Vector Q) -> Boolean
    goodCoef           : (Vector Q, List K, SY) ->
                                 Union(Record(index:Z, ker:K), "failed")
    tanRN              : (Q, K) -> F
    localnorm          : F -> F
    rooteval           : (F, List K, K, Q) -> REC
    logeval            : (F, List K, K, Vector Q) -> REC
    expeval            : (F, List K, K, Vector Q) -> REC
    taneval            : (F, List K, K, Vector Q) -> REC
    ataneval           : (F, List K, K, Vector Q) -> REC
    depeval            : (F, List K, K, Vector Q) -> REC
    expnosimp          : (F, List K, K, Vector Q, List F, F) -> REC
    tannosimp          : (F, List K, K, Vector Q, List F, F) -> REC
    rtNormalize        : F -> F
    rootNormalize0     : F -> REC
    rootKernelNormalize: (F, List K, K) -> Union(REC, "failed")
    tanSum             : (F, List F) -> F

    comb?     := F has CombinatorialOpsCategory
    mpiover2:F := pi()$F / (-2::F)

    realElem(f, l)       == smpElem(numer f, l) / smpElem(denom f, l)
    realElementary(f, x) == realElem(f, [x])
    realElementary f     == realElem(f, variables f)
    toY ker              == [func for k in ker | (func := ktoY k) ~= 0]
    toZ ker              == [func for k in ker | (func := ktoZ k) ~= 0]
    toU ker              == [func for k in ker | (func := ktoU k) ~= 0]
    toV ker              == [func for k in ker | (func := ktoV k) ~= 0]
    rtNormalize f        == rootNormalize0(f).func
    toR(ker, x) == select(is?(#1, NTHR) and first argument(#1) = x, ker)

    if R has GcdDomain then
      tanQ(c, x) ==
        tanNa(rootSimp zeroOf tanAn(x, denom(c)::PositiveInteger), numer c)
    else
      tanQ(c, x) ==
        tanNa(zeroOf tanAn(x, denom(c)::PositiveInteger), numer c)

    -- tanSum(c, [a1,...,an]) returns f(c, a1,...,an) such that
    -- if ai = tan(ui) then f(c, a1,...,an) = tan(c + u1 + ... + un).
    -- MUST BE CAREFUL FOR WHEN c IS AN ODD MULTIPLE of pi/2
    tanSum(c, l) ==
      k := c / mpiover2        -- k = - 2 c / pi, check for odd integer
                               -- tan((2n+1) pi/2 x) = - 1 / tan x
      (r := retractIfCan(k)@Union(Z, "failed")) case Z and odd?(r::Z) =>
           - inv tanSum l
      tanSum concat(tan c, l)

    rootNormalize0 f ==
      ker := select!(is?(#1, NTHR) and empty? variables first argument #1,
                      tower f)$List(K)
      empty? ker => [f, empty(), empty()]
      (n := (#ker)::Z - 1) < 1 => [f, empty(), empty()]
      for i in 1..n for kk in rest ker repeat
        (u := rootKernelNormalize(f, first(ker, i), kk)) case REC =>
          rec := u::REC
          rn  := rootNormalize0(rec.func)
          return [rn.func, concat(rec.kers, rn.kers), concat(rec.vals, rn.vals)]
      [f, empty(), empty()]

    deprel(ker, k, x) ==
      is?(k, 'log) or is?(k, 'exp) =>
        qdeprel([differentiate(g, x) for g in toY ker],
                 differentiate(ktoY k, x))
      is?(k, 'atan) or is?(k, 'tan) =>
        qdeprel([differentiate(g, x) for g in toU ker],
                 differentiate(ktoU k, x))
      is?(k, NTHR) => rootDep(ker, k)
      comb? and is?(k, 'factorial) =>
        factdeprel([x for x in ker | is?(x,'factorial) and x~=k],k)
      [true]

    ktoY k ==
      is?(k, 'log) => k::F
      is?(k, 'exp) => first argument k
      0

    ktoZ k ==
      is?(k, 'log) => first argument k
      is?(k, 'exp) => k::F
      0

    ktoU k ==
      is?(k, 'atan) => k::F
      is?(k,  'tan) => first argument k
      0

    ktoV k ==
      is?(k,  'tan) => k::F
      is?(k, 'atan) => first argument k
      0

    smpElem(p, l) ==
      map(k2Elem(#1, l), #1::F, p)$PolynomialCategoryLifting(
                                       IndexedExponents K, K, R, SMP, F)

    k2Elem(k, l) ==
      ez, iez, tz2: F
      kf := k::F
      not(empty? l) and empty? [v for v in variables kf | member?(v, l)] => kf
      empty?(args :List F := [realElem(a, l) for a in argument k]) => kf
      z := first args
      is?(k, POWER)       => (zero? z => 0; exp(last(args) * log z))
      is?(k, 'cot)   => inv tan z
      is?(k, 'acot)  => atan inv z
      is?(k, 'asin)  => atan(z / sqrt(1 - z**2))
      is?(k, 'acos)  => atan(sqrt(1 - z**2) / z)
      is?(k, 'asec)  => atan sqrt(1 - z**2)
      is?(k, 'acsc)  => atan inv sqrt(1 - z**2)
      is?(k, 'asinh) => log(sqrt(1 + z**2) + z)
      is?(k, 'acosh) => log(sqrt(z**2 - 1) + z)
      is?(k, 'atanh) => log((z + 1) / (1 - z)) / (2::F)
      is?(k, 'acoth) => log((z + 1) / (z - 1)) / (2::F)
      is?(k, 'asech) => log((inv z) + sqrt(inv(z**2) - 1))
      is?(k, 'acsch) => log((inv z) + sqrt(1 + inv(z**2)))
      is?(k, '%paren) or is?(k, '%box) =>
        empty? rest args => z
        kf
      if has?(op := operator k, 'htrig) then iez  := inv(ez  := exp z)
      is?(k, 'sinh)  => (ez - iez) / (2::F)
      is?(k, 'cosh)  => (ez + iez) / (2::F)
      is?(k, 'tanh)  => (ez - iez) / (ez + iez)
      is?(k, 'coth)  => (ez + iez) / (ez - iez)
      is?(k, 'sech)  => 2 * inv(ez + iez)
      is?(k, 'csch)  => 2 * inv(ez - iez)
      if has?(op, 'trig) then tz2  := tan(z / (2::F))
      is?(k, 'sin)   => 2 * tz2 / (1 + tz2**2)
      is?(k, 'cos)   => (1 - tz2**2) / (1 + tz2**2)
      is?(k, 'sec)   => (1 + tz2**2) / (1 - tz2**2)
      is?(k, 'csc)   => (1 + tz2**2) / (2 * tz2)
      op args

--The next 5 functions are used by normalize, once a relation is found
    depeval(f, lk, k, v) ==
      is?(k, 'log)  => logeval(f, lk, k, v)
      is?(k, 'exp)  => expeval(f, lk, k, v)
      is?(k, 'tan)  => taneval(f, lk, k, v)
      is?(k, 'atan) => ataneval(f, lk, k, v)
      is?(k, NTHR) => rooteval(f, lk, k, v(minIndex v))
      [f, empty(), empty()]

    rooteval(f, lk, k, n) ==
      nv := nthRoot(x := first argument k, m := retract(n)@Z)
      l  := [r for r in concat(k, toR(lk, x)) |
             retract(second argument r)@Z ~= m]
      lv := [nv ** (n / (retract(second argument r)@Z::Q)) for r in l]
      [eval(f, l, lv), l, lv]

    ataneval(f, lk, k, v) ==
      w := first argument k
      s := tanSum [tanQ(qelt(v,i), x)
                   for i in minIndex v .. maxIndex v for x in toV lk]
      g := +/[qelt(v, i) * x for i in minIndex v .. maxIndex v for x in toU lk]
      h:F :=
        zero?(d := 1 + s * w) => mpiover2
        atan((w - s) / d)
      g := g + h
      [eval(f, [k], [g]), [k], [g]]

    gdCoef?(c, v) ==
      for i in minIndex v .. maxIndex v repeat
        retractIfCan(qelt(v, i) / c)@Union(Z, "failed") case "failed" =>
          return false
      true

    goodCoef(v, l, s) ==
      for i in minIndex v .. maxIndex v for k in l repeat
        is?(k, s) and
           ((r:=recip(qelt(v,i))) case Q) and
            (retractIfCan(r::Q)@Union(Z, "failed") case Z)
              and gdCoef?(qelt(v, i), v) => return([i, k])
      "failed"

    taneval(f, lk, k, v) ==
      u := first argument k
      fns := toU lk
      c := u - +/[qelt(v, i) * x for i in minIndex v .. maxIndex v for x in fns]
      (rec := goodCoef(v, lk, 'tan)) case "failed" =>
          tannosimp(f, lk, k, v, fns, c)
      v0 := retract(inv qelt(v, rec.index))@Z
      lv := [qelt(v, i) for i in minIndex v .. maxIndex v |
                                                 i ~= rec.index]$List(Q)
      l  := [kk for kk in lk | kk ~= rec.ker]
      g := tanSum(-v0 * c, concat(tanNa(k::F, v0),
           [tanNa(x, - retract(a * v0)@Z) for a in lv for x in toV l]))
      [eval(f, [rec.ker], [g]), [rec.ker], [g]]

    tannosimp(f, lk, k, v, fns, c) ==
      every?(is?(#1, 'tan), lk) =>
        dd := (d := (cd := splitDenominator v).den)::F
        newt := [tan(u / dd) for u in fns]$List(F)
        newtan := [tanNa(t, d) for t in newt]$List(F)
        h := tanSum(c, [tanNa(t, qelt(cd.num, i))
                        for i in minIndex v .. maxIndex v for t in newt])
        lk := concat(k, lk)
        newtan := concat(h, newtan)
        [eval(f, lk, newtan), lk, newtan]
      h := tanSum(c, [tanQ(qelt(v, i), x)
                      for i in minIndex v .. maxIndex v for x in toV lk])
      [eval(f, [k], [h]), [k], [h]]

    expnosimp(f, lk, k, v, fns, g) ==
      every?(is?(#1, 'exp), lk) =>
        dd := (d := (cd := splitDenominator v).den)::F
        newe := [exp(y / dd) for y in fns]$List(F)
        newexp := [e ** d for e in newe]$List(F)
        h := */[e ** qelt(cd.num, i)
                for i in minIndex v .. maxIndex v for e in newe] * g
        lk := concat(k, lk)
        newexp := concat(h, newexp)
        [eval(f, lk, newexp), lk, newexp]
      h := */[exp(y) ** qelt(v, i)
                for i in minIndex v .. maxIndex v for y in fns] * g
      [eval(f, [k], [h]), [k], [h]]

    logeval(f, lk, k, v) ==
      z := first argument k
      c := z / (*/[x**qelt(v, i)
                   for x in toZ lk for i in minIndex v .. maxIndex v])
-- CHANGED log ktoZ x TO ktoY x SINCE WE WANT log exp f TO BE REPLACED BY f.
      g := +/[qelt(v, i) * x
              for i in minIndex v .. maxIndex v for x in toY lk] + log c
      [eval(f, [k], [g]), [k], [g]]

    rischNormalize(f, v) ==
      empty?(ker := varselect(tower f, v)) => [f, empty(), empty()]
      first(ker) ~= kernel(v)@K => error "Cannot happen"
      ker := rest ker
      (n := (#ker)::Z - 1) < 1 => [f, empty(), empty()]
      for i in 1..n for kk in rest ker repeat
        klist := first(ker, i)
        -- NO EVALUATION ON AN EMPTY VECTOR, WILL CAUSE INFINITE LOOP
        (c := deprel(klist, kk, v)) case vec and not empty?(c.vec) =>
          rec := depeval(f, klist, kk, c.vec)
          rn  := rischNormalize(rec.func, v)
          return [rn.func,
                   concat(rec.kers, rn.kers), concat(rec.vals, rn.vals)]
        c case func =>
          rn := rischNormalize(eval(f, [kk], [c.func]), v)
          return [rn.func, concat(kk, rn.kers), concat(c.func, rn.vals)]
      [f, empty(), empty()]

    rootNormalize(f, k) ==
      (u := rootKernelNormalize(f, toR(tower f, first argument k), k))
         case "failed" => f
      (u::REC).func

    rootKernelNormalize(f, l, k) ==
      (c := rootDep(l, k)) case vec =>
        rooteval(f, l, k, (c.vec)(minIndex(c.vec)))
      "failed"

    localnorm f ==
      for x in variables f repeat
        f := rischNormalize(f, x).func
      f

    validExponential(twr, eta, x) ==
      fns : List F
      (c := solveLinearlyOverQ(construct([differentiate(g, x)
         for g in (fns := toY twr)]$List(F))@Vector(F),
           differentiate(eta, x))) case "failed" => "failed"
      v := c::Vector(Q)
      g := eta - +/[qelt(v, i) * yy
                        for i in minIndex v .. maxIndex v for yy in fns]
      */[exp(yy) ** qelt(v, i)
                for i in minIndex v .. maxIndex v for yy in fns] * exp g

    rootDep(ker, k) ==
      empty?(ker := toR(ker, first argument k)) => [true]
      [new(1,lcm(retract(second argument k)@Z,
       "lcm"/[retract(second argument r)@Z for r in ker])::Q)$Vector(Q)]

    qdeprel(l, v) ==
      (u := solveLinearlyOverQ(construct(l)@Vector(F), v))
        case Vector(Q) => [u::Vector(Q)]
      [true]

    expeval(f, lk, k, v) ==
      y   := first argument k
      fns := toY lk
      g := y - +/[qelt(v, i) * z for i in minIndex v .. maxIndex v for z in fns]
      (rec := goodCoef(v, lk, 'exp)) case "failed" =>
        expnosimp(f, lk, k, v, fns, exp g)
      v0 := retract(inv qelt(v, rec.index))@Z
      lv := [qelt(v, i) for i in minIndex v .. maxIndex v |
                                                 i ~= rec.index]$List(Q)
      l  := [kk for kk in lk | kk ~= rec.ker]
      h :F := */[exp(z) ** (- retract(a * v0)@Z) for a in lv for z in toY l]
      h := h * exp(-v0 * g) * (k::F) ** v0
      [eval(f, [rec.ker], [h]), [rec.ker], [h]]

    if F has CombinatorialOpsCategory then
      normalize f == rtNormalize localnorm factorials realElementary f

      normalize(f, x) ==
        rtNormalize(rischNormalize(factorials(realElementary(f,x),x),x).func)

      factdeprel(l, k) ==
        ((r := retractIfCan(n := first argument k)@Union(Z, "failed"))
          case Z) and (r::Z > 0) => [factorial(r::Z)::F]
        for x in l repeat
          m := first argument x
          ((r := retractIfCan(n - m)@Union(Z, "failed")) case Z) and
            (r::Z > 0) => return([*/[(m + i::F) for i in 1..r] * x::F])
        [true]

    else
      normalize f     == rtNormalize localnorm realElementary f
      normalize(f, x) == rtNormalize(rischNormalize(realElementary(f,x),x).func)

@
\section{package ITRIGMNP InnerTrigonometricManipulations}
<<package ITRIGMNP InnerTrigonometricManipulations>>=
)abbrev package ITRIGMNP InnerTrigonometricManipulations
++ Trigs to/from exps and logs
++ Author: Manuel Bronstein
++ Date Created: 4 April 1988
++ Date Last Updated: 9 October 1993
++ Description:
++   This package provides transformations from trigonometric functions
++   to exponentials and logarithms, and back.
++   F and FG should be the same type of function space.
++ Keywords: trigonometric, function, manipulation.
InnerTrigonometricManipulations(R,F,FG): Exports == Implementation where
  R  : IntegralDomain
  F  : Join(FunctionSpace R, RadicalCategory,
            TranscendentalFunctionCategory)
  FG : Join(FunctionSpace Complex R, RadicalCategory,
            TranscendentalFunctionCategory)

  Z   ==> Integer
  SY  ==> Symbol
  OP  ==> BasicOperator
  GR  ==> Complex R
  GF  ==> Complex F
  KG  ==> Kernel FG
  PG  ==> SparseMultivariatePolynomial(GR, KG)
  UP  ==> SparseUnivariatePolynomial PG

  Exports ==> with
    GF2FG        : GF -> FG
      ++ GF2FG(a + i b) returns \spad{a + i b} viewed as a function with
      ++ the \spad{i} pushed down into the coefficient domain.
    FG2F         : FG -> F
      ++ FG2F(a + i b) returns \spad{a + sqrt(-1) b}.
    F2FG         : F  -> FG
      ++ F2FG(a + sqrt(-1) b) returns \spad{a + i b}.
    explogs2trigs: FG -> GF
      ++ explogs2trigs(f) rewrites all the complex logs and
      ++ exponentials appearing in \spad{f} in terms of trigonometric
      ++ functions.
    trigs2explogs: (FG, List KG, List SY) -> FG
      ++ trigs2explogs(f, [k1,...,kn], [x1,...,xm]) rewrites
      ++ all the trigonometric functions appearing in \spad{f} and involving
      ++ one of the \spad{xi's} in terms of complex logarithms and
      ++ exponentials. A kernel of the form \spad{tan(u)} is expressed
      ++ using \spad{exp(u)**2} if it is one of the \spad{ki's}, in terms of
      ++ \spad{exp(2*u)} otherwise.

  Implementation ==> add
    macro NTHR == 'nthRoot
    ker2explogs: (KG, List KG, List SY) -> FG
    smp2explogs: (PG, List KG, List SY) -> FG
    supexp     : (UP, GF, GF, Z) -> GF
    GR2GF      : GR -> GF
    GR2F       : GR -> F
    KG2F       : KG -> F
    PG2F       : PG -> F
    ker2trigs  : (OP, List GF) -> GF
    smp2trigs  : PG -> GF
    sup2trigs  : (UP, GF) -> GF

    nth := R has RetractableTo(Integer) and F has RadicalCategory

    GR2F g        == real(g)::F + sqrt(-(1::F)) * imag(g)::F
    KG2F k        == map(FG2F, k)$ExpressionSpaceFunctions2(FG, F)
    FG2F f        == (PG2F numer f) / (PG2F denom f)
    F2FG f        == map(#1::GR, f)$FunctionSpaceFunctions2(R,F,GR,FG)
    GF2FG f       == (F2FG real f) + complex(0, 1)$GR ::FG * F2FG imag f
    GR2GF gr      == complex(real(gr)::F, imag(gr)::F)

-- This expects the argument to have only tan and atans left.
-- Does a half-angle correction if k is not in the initial kernel list.
    ker2explogs(k, l, lx) ==
      kf : FG
      empty?([v for v in variables(kf := k::FG) |
                                         member?(v, lx)]$List(SY)) => kf
      empty?(args := [trigs2explogs(a, l, lx)
                                    for a in argument k]$List(FG)) => kf
      im := complex(0, 1)$GR :: FG
      z  := first args
      is?(k,'tan)  =>
        e := (member?(k, l) => exp(im * z) ** 2;  exp(2 * im * z))
        - im * (e - 1) /$FG (e + 1)
      is?(k,'atan) =>
        im * log((1 -$FG im *$FG z)/$FG (1 +$FG im *$FG z))$FG / (2::FG)
      (operator k) args

    trigs2explogs(f, l, lx) ==
      smp2explogs(numer f, l, lx) / smp2explogs(denom f, l, lx)

    -- return op(arg) as f + %i g
    -- op is already an operator with semantics over R, not GR
    ker2trigs(op, arg) ==
      "and"/[zero? imag x for x in arg] =>
        complex(op [real x for x in arg]$List(F), 0)
      a := first arg
      is?(op,'exp)  => exp a
      is?(op,'log)  => log a
      is?(op,'sin)  => sin a
      is?(op,'cos)  => cos a
      is?(op,'tan)  => tan a
      is?(op,'cot)  => cot a
      is?(op,'sec)  => sec a
      is?(op,'csc)  => csc a
      is?(op,'asin)  => asin a
      is?(op,'acos)  => acos a
      is?(op,'atan)  => atan a
      is?(op,'acot)  => acot a
      is?(op,'asec)  => asec a
      is?(op,'acsc)  => acsc a
      is?(op,'sinh)  => sinh a
      is?(op,'cosh)  => cosh a
      is?(op,'tanh)  => tanh a
      is?(op,'coth)  => coth a
      is?(op,'sech)  => sech a
      is?(op,'csch)  => csch a
      is?(op,'asinh)  => asinh a
      is?(op,'acosh)  => acosh a
      is?(op,'atanh)  => atanh a
      is?(op,'acoth)  => acoth a
      is?(op,'asech)  => asech a
      is?(op,'acsch)  => acsch a
      is?(op,'abs)    => sqrt(norm a)::GF
      nth and is?(op, NTHR) => nthRoot(a, retract(second arg)@Z)
      error "ker2trigs: cannot convert kernel to gaussian function"

    sup2trigs(p, f) ==
      map(smp2trigs, p)$SparseUnivariatePolynomialFunctions2(PG, GF) f

    smp2trigs p ==
      map(explogs2trigs(#1::FG),GR2GF, p)$PolynomialCategoryLifting(
                                    IndexedExponents KG, KG, GR, PG, GF)

    explogs2trigs f ==
      (m := mainKernel f) case "failed" =>
        GR2GF(retract(numer f)@GR) / GR2GF(retract(denom f)@GR)
      op  := operator(operator(k := m::KG))$F
      arg := [explogs2trigs x for x in argument k]
      num := univariate(numer f, k)
      den := univariate(denom f, k)
      is?(op,'exp) =>
        e  := exp real first arg
        y  := imag first arg
        g  := complex(e *  cos y, e * sin y)$GF
        gi := complex(cos(y) / e, - sin(y) / e)$GF
        supexp(num,g,gi,b := (degree num)::Z quo 2)/supexp(den,g,gi,b)
      sup2trigs(num, g := ker2trigs(op, arg)) / sup2trigs(den, g)

    supexp(p, f1, f2, bse) ==
      ans:GF := 0
      while p ~= 0 repeat
        g := explogs2trigs(leadingCoefficient(p)::FG)
        if ((d := degree(p)::Z - bse) >= 0) then
             ans := ans + g * f1 ** d
        else ans := ans + g * f2 ** (-d)
        p := reductum p
      ans

    PG2F p ==
      map(KG2F, GR2F, p)$PolynomialCategoryLifting(IndexedExponents KG,
                                                          KG, GR, PG, F)

    smp2explogs(p, l, lx) ==
      map(ker2explogs(#1, l, lx), #1::FG, p)$PolynomialCategoryLifting(
                                    IndexedExponents KG, KG, GR, PG, FG)

@
\section{package TRIGMNIP TrigonometricManipulations}
<<package TRIGMNIP TrigonometricManipulations>>=
)abbrev package TRIGMNIP TrigonometricManipulations
++ Trigs to/from exps and logs
++ Author: Manuel Bronstein
++ Date Created: 4 April 1988
++ Date Last Updated: 14 February 1994
++ Description:
++   \spadtype{TrigonometricManipulations} provides transformations from
++   trigonometric functions to complex exponentials and logarithms, and back.
++ Keywords: trigonometric, function, manipulation.
TrigonometricManipulations(R, F): Exports == Implementation where
  R : Join(GcdDomain, RetractableTo Integer,
           LinearlyExplicitRingOver Integer)
  F : Join(AlgebraicallyClosedField, TranscendentalFunctionCategory,
           FunctionSpace R)

  Z   ==> Integer
  SY  ==> Symbol
  K   ==> Kernel F
  FG  ==> Expression Complex R

  Exports ==> with
    complexNormalize: F -> F
      ++ complexNormalize(f) rewrites \spad{f} using the least possible number
      ++ of complex independent kernels.
    complexNormalize: (F, SY) -> F
      ++ complexNormalize(f, x) rewrites \spad{f} using the least possible
      ++ number of complex independent kernels involving \spad{x}.
    complexElementary: F -> F
      ++ complexElementary(f) rewrites \spad{f} in terms of the 2 fundamental
      ++ complex transcendental elementary functions: \spad{log, exp}.
    complexElementary: (F, SY) -> F
      ++ complexElementary(f, x) rewrites the kernels of \spad{f} involving
      ++ \spad{x} in terms of the 2 fundamental complex
      ++ transcendental elementary functions: \spad{log, exp}.
    trigs  : F -> F
      ++ trigs(f) rewrites all the complex logs and exponentials
      ++ appearing in \spad{f} in terms of trigonometric functions.
    real   : F -> F
      ++ real(f) returns the real part of \spad{f} where \spad{f} is a complex
      ++ function.
    imag   : F -> F
      ++ imag(f) returns the imaginary part of \spad{f} where \spad{f}
      ++ is a complex function.
    real?  : F -> Boolean
      ++ real?(f) returns \spad{true} if \spad{f = real f}.
    complexForm: F -> Complex F
      ++ complexForm(f) returns \spad{[real f, imag f]}.

  Implementation ==> add
    import ElementaryFunctionSign(R, F)
    import InnerTrigonometricManipulations(R,F,FG)
    import ElementaryFunctionStructurePackage(R, F)
    import ElementaryFunctionStructurePackage(Complex R, FG)

    s1  := sqrt(-1::F)
    ipi := pi()$F * s1

    K2KG          : K -> Kernel FG
    kcomplex      : K -> Union(F, "failed")
    locexplogs    : F -> FG
    localexplogs  : (F, F, List SY) -> FG
    complexKernels: F -> Record(ker: List K, val: List F)

    K2KG k           == retract(tan F2FG first argument k)@Kernel(FG)
    real? f          == empty?(complexKernels(f).ker)
    real f           == real complexForm f
    imag f           == imag complexForm f

-- returns [[k1,...,kn], [v1,...,vn]] such that ki should be replaced by vi
    complexKernels f ==
      lk:List(K) := empty()
      lv:List(F) := empty()
      for k in tower f repeat
        if (u := kcomplex k) case F then
           lk := concat(k, lk)
           lv := concat(u::F, lv)
      [lk, lv]

-- returns f if it is certain that k is not a real kernel and k = f,
-- "failed" otherwise
    kcomplex k ==
      op := operator k
      is?(k, 'nthRoot) =>
        arg := argument k
        even?(retract(n := second arg)@Z) and ((u := sign(first arg)) case Z)
          and (u::Z < 0) => op(s1, n / 2::F) * op(- first arg, n)
        "failed"
      is?(k, 'log) and ((u := sign(a := first argument k)) case Z)
          and (u::Z < 0) => op(- a) + ipi
      "failed"

    complexForm f ==
      empty?((l := complexKernels f).ker) => complex(f, 0)
      explogs2trigs locexplogs eval(f, l.ker, l.val)

    locexplogs f ==
      any?(has?(#1, 'rtrig),
           operators(g := realElementary f))$List(BasicOperator) =>
              localexplogs(f, g, variables g)
      F2FG g

    complexNormalize(f, x) ==
      g : F
      any?(has?(operator #1, 'rtrig),
       [k for k in tower(g := realElementary(f, x))
               | member?(x, variables(k::F))]$List(K))$List(K) =>
                   FG2F(rischNormalize(localexplogs(f, g, [x]), x).func)
      rischNormalize(g, x).func

    complexNormalize f ==
      l := variables(g := realElementary f)
      any?(has?(#1, 'rtrig), operators g)$List(BasicOperator) =>
        h := localexplogs(f, g, l)
        for x in l repeat h := rischNormalize(h, x).func
        FG2F h
      for x in l repeat g := rischNormalize(g, x).func
      g

    complexElementary(f, x) ==
      g : F
      any?(has?(operator #1, 'rtrig),
       [k for k in tower(g := realElementary(f, x))
                 | member?(x, variables(k::F))]$List(K))$List(K) =>
                     FG2F localexplogs(f, g, [x])
      g

    complexElementary f ==
      any?(has?(#1, 'rtrig),
        operators(g := realElementary f))$List(BasicOperator) =>
          FG2F localexplogs(f, g, variables g)
      g

    localexplogs(f, g, lx) ==
      trigs2explogs(F2FG g, [K2KG k for k in tower f
                          | is?(k, 'tan) or is?(k, 'cot)], lx)

    trigs f ==
      real? f => f
      g := explogs2trigs F2FG f
      real g + s1 * imag g

@
\section{package CTRIGMNP ComplexTrigonometricManipulations}
<<package CTRIGMNP ComplexTrigonometricManipulations>>=
)abbrev package CTRIGMNP ComplexTrigonometricManipulations
++ Real and Imaginary parts of complex functions
++ Author: Manuel Bronstein
++ Date Created: 11 June 1993
++ Date Last Updated: 14 June 1993
++ Description:
++   \spadtype{ComplexTrigonometricManipulations} provides function that
++   compute the real and imaginary parts of complex functions.
++ Keywords: complex, function, manipulation.
ComplexTrigonometricManipulations(R, F): Exports == Implementation where
  R : Join(IntegralDomain, RetractableTo Integer)
  F : Join(AlgebraicallyClosedField, TranscendentalFunctionCategory,
           FunctionSpace Complex R)


  SY  ==> Symbol
  FR  ==> Expression R
  K   ==> Kernel F


  Exports ==> with
    complexNormalize: F -> F
      ++ complexNormalize(f) rewrites \spad{f} using the least possible number
      ++ of complex independent kernels.
    complexNormalize: (F, SY) -> F
      ++ complexNormalize(f, x) rewrites \spad{f} using the least possible
      ++ number of complex independent kernels involving \spad{x}.
    complexElementary: F -> F
      ++ complexElementary(f) rewrites \spad{f} in terms of the 2 fundamental
      ++ complex transcendental elementary functions: \spad{log, exp}.
    complexElementary: (F, SY) -> F
      ++ complexElementary(f, x) rewrites the kernels of \spad{f} involving
      ++ \spad{x} in terms of the 2 fundamental complex
      ++ transcendental elementary functions: \spad{log, exp}.
    real   : F -> FR
      ++ real(f) returns the real part of \spad{f} where \spad{f} is a complex
      ++ function.
    imag   : F -> FR
      ++ imag(f) returns the imaginary part of \spad{f} where \spad{f}
      ++ is a complex function.
    real?  : F -> Boolean
      ++ real?(f) returns \spad{true} if \spad{f = real f}.
    trigs  : F -> F
      ++ trigs(f) rewrites all the complex logs and exponentials
      ++ appearing in \spad{f} in terms of trigonometric functions.
    complexForm: F -> Complex FR
      ++ complexForm(f) returns \spad{[real f, imag f]}.

  Implementation ==> add
    import InnerTrigonometricManipulations(R, FR, F)
    import ElementaryFunctionStructurePackage(Complex R, F)

    rreal?: Complex R -> Boolean
    kreal?: Kernel F -> Boolean
    localexplogs  : (F, F, List SY) -> F

    real f        == real complexForm f
    imag f        == imag complexForm f
    rreal? r      == zero? imag r
    kreal? k      == every?(real?, argument k)$List(F)
    complexForm f == explogs2trigs f

    trigs f ==
      GF2FG explogs2trigs f

    real? f ==
      every?(rreal?, coefficients numer f)
        and every?(rreal?, coefficients denom f) and every?(kreal?, kernels f)

    localexplogs(f, g, lx) ==
      trigs2explogs(g, [k for k in tower f
                          | is?(k, 'tan) or is?(k, 'cot)], lx)

    complexElementary f ==
      any?(has?(#1, 'rtrig),
        operators(g := realElementary f))$List(BasicOperator) =>
          localexplogs(f, g, variables g)
      g

    complexElementary(f, x) ==
      g : F
      any?(has?(operator #1, 'rtrig),
       [k for k in tower(g := realElementary(f, x))
                 | member?(x, variables(k::F))]$List(K))$List(K) =>
                     localexplogs(f, g, [x])
      g

    complexNormalize(f, x) ==
      g : F
      any?(has?(operator #1, 'rtrig),
       [k for k in tower(g := realElementary(f, x))
               | member?(x, variables(k::F))]$List(K))$List(K) =>
                   (rischNormalize(localexplogs(f, g, [x]), x).func)
      rischNormalize(g, x).func

    complexNormalize f ==
      l := variables(g := realElementary f)
      any?(has?(#1, 'rtrig), operators g)$List(BasicOperator) =>
        h := localexplogs(f, g, l)
        for x in l repeat h := rischNormalize(h, x).func
        h
      for x in l repeat g := rischNormalize(g, x).func
      g

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2009, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

-- SPAD files for the integration world should be compiled in the
-- following order:
--
--   intaux  rderf  intrf  curve  curvepkg  divisor  pfo
--   intalg  intaf  EFSTRUC  rdeef  intef  irexpand  integrat

<<package SYMFUNC SymmetricFunctions>>
<<package TANEXP TangentExpansions>>
<<package EFSTRUC ElementaryFunctionStructurePackage>>
<<package ITRIGMNP InnerTrigonometricManipulations>>
<<package TRIGMNIP TrigonometricManipulations>>
<<package CTRIGMNP ComplexTrigonometricManipulations>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}