\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra e04Package.spad} \author{Brian Dupee} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package OPTPACK AnnaNumericalOptimizationPackage} <<package OPTPACK AnnaNumericalOptimizationPackage>>= )abbrev package OPTPACK AnnaNumericalOptimizationPackage ++ Author: Brian Dupee ++ Date Created: February 1995 ++ Date Last Updated: December 1997 ++ Basic Operations: measure, optimize, goodnessOfFit. ++ Description: ++ \axiomType{AnnaNumericalOptimizationPackage} is a \axiom{package} of ++ functions for the \axiomType{NumericalOptimizationCategory} ++ with \axiom{measure} and \axiom{optimize}. EDF ==> Expression DoubleFloat LEDF ==> List Expression DoubleFloat LDF ==> List DoubleFloat MDF ==> Matrix DoubleFloat DF ==> DoubleFloat LOCDF ==> List OrderedCompletion DoubleFloat OCDF ==> OrderedCompletion DoubleFloat LOCF ==> List OrderedCompletion Float OCF ==> OrderedCompletion Float LEF ==> List Expression Float EF ==> Expression Float LF ==> List Float F ==> Float LS ==> List Symbol LST ==> List String INT ==> Integer NOA ==> Record(fn:EDF, init:LDF, lb:LOCDF, cf:LEDF, ub:LOCDF) LSA ==> Record(lfn:LEDF, init:LDF) IFL ==> List(Record(ifail:Integer,instruction:String)) Entry ==> Record(chapter:String, type:String, domainName: String, defaultMin:F, measure:F, failList:IFL, explList:LST) Measure ==> Record(measure:F,name:String, explanations:List String) Measure2 ==> Record(measure:F,explanations:String) RT ==> RoutinesTable UNOALSA ==> Union(noa:NOA,lsa:LSA) AnnaNumericalOptimizationPackage(): with measure:NumericalOptimizationProblem -> Measure ++ measure(prob) is a top level ANNA function for identifying the most ++ appropriate numerical routine from those in the routines table ++ provided for solving the numerical optimization problem defined by ++ \axiom{prob} by checking various attributes of the functions and ++ calculating a measure of compatibility of each routine to these ++ attributes. ++ ++ It calls each \axiom{domain} of \axiom{category} ++ \axiomType{NumericalOptimizationCategory} in turn to calculate all ++ measures and returns the best i.e. the name of the most ++ appropriate domain and any other relevant information. measure:(NumericalOptimizationProblem,RT) -> Measure ++ measure(prob,R) is a top level ANNA function for identifying the most ++ appropriate numerical routine from those in the routines table ++ provided for solving the numerical optimization problem defined by ++ \axiom{prob} by checking various attributes of the functions and ++ calculating a measure of compatibility of each routine to these ++ attributes. ++ ++ It calls each \axiom{domain} listed in \axiom{R} of \axiom{category} ++ \axiomType{NumericalOptimizationCategory} in turn to calculate all ++ measures and returns the best i.e. the name of the most ++ appropriate domain and any other relevant information. optimize:(NumericalOptimizationProblem,RT) -> Result ++ optimize(prob,routines) is a top level ANNA function to ++ minimize a function or a set of functions with any constraints ++ as defined within \axiom{prob}. ++ ++ It iterates over the \axiom{domains} listed in \axiom{routines} of ++ \axiomType{NumericalOptimizationCategory} ++ to get the name and other relevant information of the best ++ \axiom{measure} and then optimize the function on that \axiom{domain}. optimize:NumericalOptimizationProblem -> Result ++ optimize(prob) is a top level ANNA function to ++ minimize a function or a set of functions with any constraints ++ as defined within \axiom{prob}. ++ ++ It iterates over the \axiom{domains} of ++ \axiomType{NumericalOptimizationCategory} ++ to get the name and other relevant information of the best ++ \axiom{measure} and then optimize the function on that \axiom{domain}. goodnessOfFit:NumericalOptimizationProblem -> Result ++ goodnessOfFit(prob) is a top level ANNA function to ++ check to goodness of fit of a least squares model ++ as defined within \axiom{prob}. ++ ++ It iterates over the \axiom{domains} of ++ \axiomType{NumericalOptimizationCategory} ++ to get the name and other relevant information of the best ++ \axiom{measure} and then optimize the function on that \axiom{domain}. ++ It then calls the numerical routine \axiomType{E04YCF} to get estimates ++ of the variance-covariance matrix of the regression coefficients of ++ the least-squares problem. ++ ++ It thus returns both the results of the optimization and the ++ variance-covariance calculation. optimize:(EF,LF,LOCF,LEF,LOCF) -> Result ++ optimize(f,start,lower,cons,upper) is a top level ANNA function to ++ minimize a function, \axiom{f}, of one or more variables with the ++ given constraints. ++ ++ These constraints may be simple constraints on the variables ++ in which case \axiom{cons} would be an empty list and the bounds on ++ those variables defined in \axiom{lower} and \axiom{upper}, or a ++ mixture of simple, linear and non-linear constraints, where ++ \axiom{cons} contains the linear and non-linear constraints and ++ the bounds on these are added to \axiom{upper} and \axiom{lower}. ++ ++ The parameter \axiom{start} is a list of the initial guesses of the ++ values of the variables. ++ ++ It iterates over the \axiom{domains} of ++ \axiomType{NumericalOptimizationCategory} ++ to get the name and other relevant information of the best ++ \axiom{measure} and then optimize the function on that \axiom{domain}. optimize:(EF,LF,LOCF,LOCF) -> Result ++ optimize(f,start,lower,upper) is a top level ANNA function to ++ minimize a function, \axiom{f}, of one or more variables with ++ simple constraints. The bounds on ++ the variables are defined in \axiom{lower} and \axiom{upper}. ++ ++ The parameter \axiom{start} is a list of the initial guesses of the ++ values of the variables. ++ ++ It iterates over the \axiom{domains} of ++ \axiomType{NumericalOptimizationCategory} ++ to get the name and other relevant information of the best ++ \axiom{measure} and then optimize the function on that \axiom{domain}. optimize:(EF,LF) -> Result ++ optimize(f,start) is a top level ANNA function to ++ minimize a function, \axiom{f}, of one or more variables without ++ constraints. ++ ++ The parameter \axiom{start} is a list of the initial guesses of the ++ values of the variables. ++ ++ It iterates over the \axiom{domains} of ++ \axiomType{NumericalOptimizationCategory} ++ to get the name and other relevant information of the best ++ \axiom{measure} and then optimize the function on that \axiom{domain}. optimize:(LEF,LF) -> Result ++ optimize(lf,start) is a top level ANNA function to ++ minimize a set of functions, \axiom{lf}, of one or more variables ++ without constraints i.e. a least-squares problem. ++ ++ The parameter \axiom{start} is a list of the initial guesses of the ++ values of the variables. ++ ++ It iterates over the \axiom{domains} of ++ \axiomType{NumericalOptimizationCategory} ++ to get the name and other relevant information of the best ++ \axiom{measure} and then optimize the function on that \axiom{domain}. goodnessOfFit:(LEF,LF) -> Result ++ goodnessOfFit(lf,start) is a top level ANNA function to ++ check to goodness of fit of a least squares model i.e. the minimization ++ of a set of functions, \axiom{lf}, of one or more variables without ++ constraints. ++ ++ The parameter \axiom{start} is a list of the initial guesses of the ++ values of the variables. ++ ++ It iterates over the \axiom{domains} of ++ \axiomType{NumericalOptimizationCategory} ++ to get the name and other relevant information of the best ++ \axiom{measure} and then optimize the function on that \axiom{domain}. ++ It then calls the numerical routine \axiomType{E04YCF} to get estimates ++ of the variance-covariance matrix of the regression coefficients of ++ the least-squares problem. ++ ++ It thus returns both the results of the optimization and the ++ variance-covariance calculation. ++ goodnessOfFit(lf,start) is a top level function to iterate over ++ the \axiom{domains} of \axiomType{NumericalOptimizationCategory} ++ to get the name and other relevant information of the best ++ \axiom{measure} and then optimize the function on that \axiom{domain}. ++ It then checks the goodness of fit of the least squares model. == add preAnalysis:RT -> RT zeroMeasure:Measure -> Result optimizeSpecific:(UNOALSA,String) -> Result measureSpecific:(String,RT,UNOALSA) -> Measure2 changeName:(Result,String) -> Result recoverAfterFail:(UNOALSA,RT,Measure,INT,Result) -> Record(a:Result,b:Measure) constant:UNOALSA -> Union(DF, "failed") optimizeConstant:DF -> Result import ExpertSystemToolsPackage,e04AgentsPackage,NumericalOptimizationProblem constant(args:UNOALSA):Union(DF,"failed") == args case noa => Args := args.noa f := Args.fn retractIfCan(f)@Union(DoubleFloat,"failed") "failed" optimizeConstant(c:DF): Result == a := coerce(c)$AnyFunctions1(DF) text := coerce("Constant Function")$AnyFunctions1(String) construct([[objf@Symbol,a],[method@Symbol,text]])$Result preAnalysis(args:UNOALSA,t:RT):RT == r := selectOptimizationRoutines(t)$RT args case lsa => selectSumOfSquaresRoutines(r)$RT r zeroMeasure(m:Measure):Result == a := coerce(0$F)$AnyFunctions1(F) text := coerce("Zero Measure")$AnyFunctions1(String) r := construct([[objf@Symbol,a],[method@Symbol,text]])$Result concat(measure2Result m,r) measureSpecific(name:String,R:RT,args:UNOALSA): Measure2 == args case noa => arg:NOA := args.noa name = "e04dgfAnnaType" => measure(R,arg)$e04dgfAnnaType name = "e04fdfAnnaType" => measure(R,arg)$e04fdfAnnaType name = "e04gcfAnnaType" => measure(R,arg)$e04gcfAnnaType name = "e04jafAnnaType" => measure(R,arg)$e04jafAnnaType name = "e04mbfAnnaType" => measure(R,arg)$e04mbfAnnaType name = "e04nafAnnaType" => measure(R,arg)$e04nafAnnaType name = "e04ucfAnnaType" => measure(R,arg)$e04ucfAnnaType error("measureSpecific","invalid type name: " name)$ErrorFunctions args case lsa => arg2:LSA := args.lsa name = "e04fdfAnnaType" => measure(R,arg2)$e04fdfAnnaType name = "e04gcfAnnaType" => measure(R,arg2)$e04gcfAnnaType error("measureSpecific","invalid type name: " name)$ErrorFunctions error("measureSpecific","invalid argument type")$ErrorFunctions measure(Args:NumericalOptimizationProblem,R:RT):Measure == args:UNOALSA := retract(Args)$NumericalOptimizationProblem sofar := 0$F best := "none" :: String routs := copy R routs := preAnalysis(args,routs) empty?(routs)$RT => error("measure", "no routines found")$ErrorFunctions rout := inspect(routs)$RT e := retract(rout.entry)$AnyFunctions1(Entry) meth := empty()$(List String) for i in 1..# routs repeat rout := extract!(routs)$RT e := retract(rout.entry)$AnyFunctions1(Entry) n := e.domainName if e.defaultMin > sofar then m := measureSpecific(n,R,args) if m.measure > sofar then sofar := m.measure best := n str := [concat(concat([string(rout.key)$Symbol,"measure: ", outputMeasure(m.measure)," - "], m.explanations)$(List String))$String] else str := [concat([string(rout.key)$Symbol ," is no better than other routines"])$String] meth := append(meth,str)$(List String) [sofar,best,meth] measure(args:NumericalOptimizationProblem):Measure == measure(args,routines()$RT) optimizeSpecific(args:UNOALSA,name:String):Result == args case noa => arg:NOA := args.noa name = "e04dgfAnnaType" => numericalOptimization(arg)$e04dgfAnnaType name = "e04fdfAnnaType" => numericalOptimization(arg)$e04fdfAnnaType name = "e04gcfAnnaType" => numericalOptimization(arg)$e04gcfAnnaType name = "e04jafAnnaType" => numericalOptimization(arg)$e04jafAnnaType name = "e04mbfAnnaType" => numericalOptimization(arg)$e04mbfAnnaType name = "e04nafAnnaType" => numericalOptimization(arg)$e04nafAnnaType name = "e04ucfAnnaType" => numericalOptimization(arg)$e04ucfAnnaType error("optimizeSpecific","invalid type name: " name)$ErrorFunctions args case lsa => arg2:LSA := args.lsa name = "e04fdfAnnaType" => numericalOptimization(arg2)$e04fdfAnnaType name = "e04gcfAnnaType" => numericalOptimization(arg2)$e04gcfAnnaType error("optimizeSpecific","invalid type name: " name)$ErrorFunctions error("optimizeSpecific","invalid type name: " name)$ErrorFunctions changeName(ans:Result,name:String):Result == st:String := concat([name,"Answer"])$String sy:Symbol := coerce(st)$Symbol anyAns:Any := coerce(ans)$AnyFunctions1(Result) construct([[sy,anyAns]])$Result recoverAfterFail(args:UNOALSA,routs:RT,m:Measure, iint:INT,r:Result):Record(a:Result,b:Measure) == while positive?(iint) repeat routineName := m.name s := recoverAfterFail(routs,routineName(1..6),iint)$RT s case "failed" => iint := 0 (s = "no action")@Boolean => iint := 0 fl := coerce(s)$AnyFunctions1(String) flrec:Record(key:Symbol,entry:Any):=[failure@Symbol,fl] m2 := measure(args::NumericalOptimizationProblem,routs) zero?(m2.measure) => iint := 0 r2:Result := optimizeSpecific(args,m2.name) m := m2 insert!(flrec,r2)$Result r := concat(r2,changeName(r,routineName)) iany := search(ifail@Symbol,r2)$Result iany case "failed" => iint := 0 iint := retract(iany)$AnyFunctions1(INT) [r,m] optimize(Args:NumericalOptimizationProblem,t:RT):Result == args:UNOALSA := retract(Args)$NumericalOptimizationProblem routs := copy(t)$RT c:Union(DF,"failed") := constant(args) c case DF => optimizeConstant(c) m := measure(Args,routs) zero?(m.measure) => zeroMeasure m r := optimizeSpecific(args,n := m.name) iany := search(ifail@Symbol,r)$Result iint := 0$INT if (iany case Any) then iint := retract(iany)$AnyFunctions1(INT) if positive?(iint) then tu:Record(a:Result,b:Measure) := recoverAfterFail(args,routs,m,iint,r) r := tu.a m := tu.b r := concat(measure2Result m,r) expl := getExplanations(routs,n(1..6))$RoutinesTable expla := coerce(expl)$AnyFunctions1(LST) explaa:Record(key:Symbol,entry:Any) := ["explanations"::Symbol,expla] r := concat(construct([explaa]),r) att:List String := optAttributes(args) atta := coerce(att)$AnyFunctions1(List String) attr:Record(key:Symbol,entry:Any) := [attributes@Symbol,atta] insert!(attr,r)$Result optimize(args:NumericalOptimizationProblem):Result == optimize(args,routines()$RT) goodnessOfFit(Args:NumericalOptimizationProblem):Result == r := optimize(Args) args1:UNOALSA := retract(Args)$NumericalOptimizationProblem args1 case noa => error("goodnessOfFit","Not an appropriate problem") args:LSA := args1.lsa lf := args.lfn n:INT := #(variables(args)) m:INT := # lf me := search(method,r)$Result me case "failed" => r meth := retract(me)$AnyFunctions1(Result) na := search(nameOfRoutine,meth)$Result na case "failed" => r name := retract(na)$AnyFunctions1(String) temp:INT := (n*(n-1)) quo 2 ns:INT := name = "e04fdfAnnaType" => 6*n+(2+n)*m+1+max(1,temp) 8*n+(n+2)*m+temp+1+max(1,temp) nv:INT := ns+n ww := search(w,r)$Result ww case "failed" => r ws:MDF := retract(ww)$AnyFunctions1(MDF) fr := search(objf,r)$Result fr case "failed" => r f := retract(fr)$AnyFunctions1(DF) s := subMatrix(ws,1,1,ns,nv-1)$MDF v := subMatrix(ws,1,1,nv,nv+n*n-1)$MDF r2 := e04ycf(0,m,n,f,s,n,v,-1)$NagOptimisationPackage concat(r,r2) optimize(f:EF,start:LF,lower:LOCF,cons:LEF,upper:LOCF):Result == args:NOA := [ef2edf(f),[f2df i for i in start],[ocf2ocdf j for j in lower], [ef2edf k for k in cons], [ocf2ocdf l for l in upper]] optimize(args::NumericalOptimizationProblem) optimize(f:EF,start:LF,lower:LOCF,upper:LOCF):Result == optimize(f,start,lower,empty()$LEF,upper) optimize(f:EF,start:LF):Result == optimize(f,start,empty()$LOCF,empty()$LOCF) optimize(lf:LEF,start:LF):Result == args:LSA := [[ef2edf i for i in lf],[f2df j for j in start]] optimize(args::NumericalOptimizationProblem) goodnessOfFit(lf:LEF,start:LF):Result == args:LSA := [[ef2edf i for i in lf],[f2df j for j in start]] goodnessOfFit(args::NumericalOptimizationProblem) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package OPTPACK AnnaNumericalOptimizationPackage>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}