\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra derham.spad} \author{Larry A. Lambe} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{category LALG LeftAlgebra} <<category LALG LeftAlgebra>>= )abbrev category LALG LeftAlgebra ++ Author: Larry A. Lambe ++ Date : 03/01/89; revised 03/17/89; revised 12/02/90. ++ Description: The category of all left algebras over an arbitrary ++ ring. LeftAlgebra(R:Ring): Category == Join(Ring, LeftModule R) with --operations coerce: R -> % ++ coerce(r) returns r * 1 where 1 is the identity of the ++ left algebra. add coerce(x:R):% == x * 1$% @ \section{domain EAB ExtAlgBasis} <<domain EAB ExtAlgBasis>>= )abbrev domain EAB ExtAlgBasis --% ExtAlgBasis ++ Author: Larry Lambe ++ Date created: 03/14/89 ++ Description: ++ A domain used in the construction of the exterior algebra on a set ++ X over a ring R. This domain represents the set of all ordered ++ subsets of the set X, assumed to be in correspondance with ++ {1,2,3, ...}. The ordered subsets are themselves ordered ++ lexicographically and are in bijective correspondance with an ordered ++ basis of the exterior algebra. In this domain we are dealing strictly ++ with the exponents of basis elements which can only be 0 or 1. -- Thus we really have L({0,1}). ++ ++ The multiplicative identity element of the exterior algebra corresponds ++ to the empty subset of X. A coerce from List Integer to an ++ ordered basis element is provided to allow the convenient input of ++ expressions. Another exported function forgets the ordered structure ++ and simply returns the list corresponding to an ordered subset. ExtAlgBasis(): Export == Implement where I ==> Integer L ==> List NNI ==> NonNegativeInteger Export == OrderedSet with coerce : L I -> % ++ coerce(l) converts a list of 0's and 1's into a basis ++ element, where 1 (respectively 0) designates that the ++ variable of the corresponding index of l is (respectively, is not) ++ present. ++ Error: if an element of l is not 0 or 1. degree : % -> NNI ++ degree(x) gives the numbers of 1's in x, i.e., the number ++ of non-zero exponents in the basis element that x represents. exponents : % -> L I ++ exponents(x) converts a domain element into a list of zeros ++ and ones corresponding to the exponents in the basis element ++ that x represents. -- subscripts : % -> L I -- subscripts(x) looks at the exponents in x and converts -- them to the proper subscripts Nul : NNI -> % ++ Nul() gives the basis element 1 for the algebra generated ++ by n generators. Implement == add Rep := L I x = y == x =$Rep y x < y == null x => not null y null y => false first x = first y => rest x < rest y first x > first y coerce(li:(L I)) == for x in li repeat if not one? x and not zero? x then error "coerce: values can only be 0 and 1" li degree x == (_+/x)::NNI exponents x == copy(x @ Rep) -- subscripts x == -- cntr:I := 1 -- result: L I := [] -- for j in x repeat -- if j = 1 then result := cons(cntr,result) -- cntr:=cntr+1 -- reverse! result Nul n == [0 for i in 1..n] coerce(x: %) == coerce(x @ Rep)$(L I) @ \section{domain ANTISYM AntiSymm} <<domain ANTISYM AntiSymm>>= )abbrev domain ANTISYM AntiSymm ++ Author: Larry A. Lambe ++ Date : 01/26/91. ++ Revised : May 19, 2013. ++ ++ based on AntiSymmetric '89 ++ ++ Needs: ExtAlgBasis, FreeModule(Ring,OrderedSet), LALG, LALG- ++ ++ Description: The domain of antisymmetric polynomials. AntiSymm(R:Ring, lVar:List Symbol): Export == Implement where LALG ==> LeftAlgebra FMR ==> FM(R,EAB) FM ==> FreeModule I ==> Integer L ==> List EAB ==> ExtAlgBasis -- these are exponents of basis elements in order NNI ==> NonNegativeInteger O ==> OutputForm base ==> k coef ==> c Term ==> Record(k:EAB,c:R) Export == Join(LALG(R),RetractableTo(R),Functorial R) with leadingCoefficient : % -> R ++ leadingCoefficient(p) returns the leading ++ coefficient of antisymmetric polynomial p. -- leadingSupport : % -> EAB leadingBasisTerm : % -> % ++ leadingBasisTerm(p) returns the leading ++ basis term of antisymmetric polynomial p. reductum : % -> % ++ reductum(p), where p is an antisymmetric polynomial, ++ returns p minus the leading ++ term of p if p has at least two terms, and 0 otherwise. coefficient : (%,%) -> R ++ coefficient(p,u) returns the coefficient of ++ the term in p containing the basis term u if such ++ a term exists, and 0 otherwise. ++ Error: if the second argument u is not a basis element. generator : NNI -> % ++ generator(n) returns the nth multiplicative generator, ++ a basis term. exp : L I -> % ++ exp([i1,...in]) returns \spad{u_1\^{i_1} ... u_n\^{i_n}} homogeneous? : % -> Boolean ++ homogeneous?(p) tests if all of the terms of ++ p have the same degree. retractable? : % -> Boolean ++ retractable?(p) tests if p is a 0-form, ++ i.e., if degree(p) = 0. degree : % -> NNI ++ degree(p) returns the homogeneous degree of p. -- 1 corresponds to the empty monomial Nul = [0,...,0] -- from EAB. In terms of the exterior algebra on X, -- it corresponds to the identity element which lives -- in homogeneous degree 0. Implement == FMR add Rep := L Term x,y : EAB a,b : % r : R m : I dim := #lVar 1 == [[ Nul(dim)$EAB, 1$R ]] coefficient(a,u) == not null u.rest => error "2nd argument must be a basis element" x := u.first.base for t in a repeat if t.base = x then return t.coef if t.base < x then return 0 0 retractable?(a) == null a or (a.first.k = Nul(dim)) retractIfCan(a):Union(R,"failed") == null a => 0$R a.first.k = Nul(dim) => leadingCoefficient a "failed" retract(a):R == null a => 0$R leadingCoefficient a homogeneous? a == null a => true siz := +/exponents(a.first.base) for ta in reductum a repeat +/exponents(ta.base) ~= siz => return false true degree a == null a => 0$NNI homogeneous? a => (+/exponents(a.first.base)) :: NNI error "not a homogeneous element" zo : (I,I) -> L I zo(p,q) == p = 0 => [1,q] q = 0 => [1,1] [0,0] getsgn : (EAB,EAB) -> I getsgn(x,y) == sgn:I := 0 xx:L I := exponents x yy:L I := exponents y for i in 1 .. (dim-1) repeat xx := rest xx sgn := sgn + (+/xx)*yy.i sgn rem 2 = 0 => 1 -1 Nalpha: (EAB,EAB) -> L I Nalpha(x,y) == i:I := 1 dum2:L I := [0 for i in 1..dim] for j in 1..dim repeat dum:=zo((exponents x).j,(exponents y).j) (i:= i*dum.1) = 0 => leave dum2.j := dum.2 i = 0 => cons(i, dum2) cons(getsgn(x,y), dum2) a * b == null a => 0 null b => 0 ((null a.rest) and (a.first.k = Nul(dim))) => a.first.c * b ((null b.rest) and (b.first.k = Nul(dim))) => b.first.c * a z:% := 0 for tb in b repeat for ta in a repeat stuff:=Nalpha(ta.base,tb.base) r:=first(stuff)*ta.coef*tb.coef if r ~= 0 then z := z + [[rest(stuff)::EAB, r]] z coerce(r):% == r = 0 => 0 [ [Nul(dim), r] ] coerce(m):% == m = 0 => 0 [ [Nul(dim), m::R] ] characteristic == characteristic$R generator(j) == -- j < 1 or j > dim => error "your subscript is out of range" -- error will be generated by dum.j if out of range dum:L I := [0 for i in 1..dim] dum.j:=1 [[dum::EAB, 1::R]] exp(li:(L I)) == [[li::EAB, 1]] leadingBasisTerm a == [[a.first.k, 1]] displayList:EAB -> O displayList(x):O == le: L I := exponents(x)$EAB reduce(_*,[(lVar.i)::O for i in 1..dim | one?(le.i)])$L(O) makeTerm:(R,EAB) -> O makeTerm(r,x) == -- we know that r ~= 0 x = Nul(dim)$EAB => r::O one? r => displayList(x) -- r = 0 => 0$I::O -- x = Nul(dim)$EAB => r::O r::O * displayList(x) coerce(a):O == zero? a => 0$I::O null rest(a @ Rep) => t := first(a @ Rep) makeTerm(t.coef,t.base) reduce(_+,[makeTerm(t.coef,t.base) for t in (a @ Rep)])$L(O) @ \section{domain DERHAM DeRhamComplex} <<domain DERHAM DeRhamComplex>>= )abbrev domain DERHAM DeRhamComplex ++ Author: Larry A. Lambe ++ Date : 01/26/91. ++ Revised : May 19, 2013. ++ ++ based on code from '89 (AntiSymmetric) ++ ++ Needs: LeftAlgebra, ExtAlgBasis, FreeMod(Ring,OrderedSet) ++ ++ Description: The deRham complex of Euclidean space, that is, the ++ class of differential forms of arbitary degree over a coefficient ring. ++ See Flanders, Harley, Differential Forms, With Applications to the Physical ++ Sciences, New York, Academic Press, 1963. DeRhamComplex(CoefRing,listIndVar:List Symbol): Export == Implement where CoefRing : Join(Ring, OrderedSet) ASY ==> AntiSymm(R,listIndVar) DIFRING ==> DifferentialRing LALG ==> LeftAlgebra FMR ==> FreeMod(R,EAB) I ==> Integer L ==> List EAB ==> ExtAlgBasis -- these are exponents of basis elements in order NNI ==> NonNegativeInteger O ==> OutputForm R ==> Expression(CoefRing) Export == Join(LALG(R), RetractableTo(R),Functorial R) with leadingCoefficient : % -> R ++ leadingCoefficient(df) returns the leading ++ coefficient of differential form df. leadingBasisTerm : % -> % ++ leadingBasisTerm(df) returns the leading ++ basis term of differential form df. reductum : % -> % ++ reductum(df), where df is a differential form, ++ returns df minus the leading ++ term of df if df has two or more terms, and ++ 0 otherwise. coefficient : (%,%) -> R ++ coefficient(df,u), where df is a differential form, ++ returns the coefficient of df containing the basis term u ++ if such a term exists, and 0 otherwise. generator : NNI -> % ++ generator(n) returns the nth basis term for a differential form. homogeneous? : % -> Boolean ++ homogeneous?(df) tests if all of the terms of ++ differential form df have the same degree. retractable? : % -> Boolean ++ retractable?(df) tests if differential form df is a 0-form, ++ i.e., if degree(df) = 0. degree : % -> I ++ degree(df) returns the homogeneous degree of differential form df. totalDifferential : R -> % ++ totalDifferential(x) returns the total differential ++ (gradient) form for element x. exteriorDifferential : % -> % ++ exteriorDifferential(df) returns the exterior ++ derivative (gradient, curl, divergence, ...) of ++ the differential form df. Implement == ASY add Rep := ASY dim := #listIndVar totalDifferential(f) == divs:=[differentiate(f,listIndVar.i)*generator(i)$ASY for i in 1..dim] reduce("+",divs) termDiff : (R, %) -> % termDiff(r,e) == totalDifferential(r) * e exteriorDifferential(x) == x = 0 => 0 termDiff(leadingCoefficient(x)$Rep,leadingBasisTerm x) + exteriorDifferential(reductum x) lv := [concat("d",string(liv))$String::Symbol for liv in listIndVar] displayList:EAB -> O displayList(x):O == le: L I := exponents(x)$EAB reduce(_*,[(lv.i)::O for i in 1..dim | one?(le.i)])$L(O) makeTerm:(R,EAB) -> O makeTerm(r,x) == -- we know that r ~= 0 x = Nul(dim)$EAB => r::O one? r => displayList(x) r::O * displayList(x) terms : % -> List Record(k: EAB, c: R) terms(a) == -- it is the case that there are at least two terms in a a pretend List Record(k: EAB, c: R) coerce(a):O == a = 0$Rep => 0$I::O ta := terms a -- reductum(a) = 0$Rep => makeTerm(leadingCoefficient a, a.first.k) null ta.rest => makeTerm(ta.first.c, ta.first.k) reduce(_+,[makeTerm(t.c,t.k) for t in ta])$L(O) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. --Copyright (C) 2007-2013, Gabriel Dos Reis. --All rights reversed. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<category LALG LeftAlgebra>> <<domain EAB ExtAlgBasis>> <<domain ANTISYM AntiSymm>> <<domain DERHAM DeRhamComplex>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}