\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra derham.spad}
\author{Larry A. Lambe}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{category LALG LeftAlgebra}
<<category LALG LeftAlgebra>>=
)abbrev category LALG LeftAlgebra
++ Author: Larry A. Lambe
++ Date  : 03/01/89; revised 03/17/89; revised 12/02/90.
++ Description: The category of all left algebras over an arbitrary
++ ring.
LeftAlgebra(R:Ring): Category == Join(Ring, LeftModule R) with
    --operations
      coerce: R -> %
	++ coerce(r) returns r * 1 where 1 is the identity of the
	++ left algebra.
    add
      coerce(x:R):% == x * 1$%

@
\section{domain EAB ExtAlgBasis}
<<domain EAB ExtAlgBasis>>=
)abbrev domain EAB ExtAlgBasis
--% ExtAlgBasis
++  Author: Larry Lambe
++  Date created: 03/14/89
++  Description:
++  A domain used in the construction of the exterior algebra on a set
++  X over a ring R.  This domain represents the set of all ordered
++  subsets of the set X, assumed to be in correspondance with
++  {1,2,3, ...}.  The ordered subsets are themselves ordered 
++  lexicographically and are in bijective correspondance with an ordered 
++  basis of the exterior algebra.  In this domain we are dealing strictly
++  with the exponents of basis elements which can only be 0 or 1.
--  Thus we really have L({0,1}).
++
++  The multiplicative identity element of the exterior algebra corresponds
++  to the empty subset of X.  A coerce from List Integer to an
++  ordered basis element is provided to allow the convenient input of 
++  expressions. Another exported function forgets the ordered structure
++  and simply returns the list corresponding to an ordered subset.
 
ExtAlgBasis(): Export == Implement where
   I   ==> Integer
   L   ==> List
   NNI ==> NonNegativeInteger
 
   Export == OrderedSet with
     coerce     : L I -> %
	++ coerce(l) converts a list of 0's and 1's into a basis
	++ element, where 1 (respectively 0) designates that the
        ++ variable of the corresponding index of l is (respectively, is not)
        ++ present.
        ++ Error: if an element of l is not 0 or 1.
     degree     : %   -> NNI
	++ degree(x) gives the numbers of 1's in x, i.e., the number
	++ of non-zero exponents in the basis element that x represents.
     exponents  : %   -> L I
	++ exponents(x) converts a domain element into a list of zeros
	++ and ones corresponding to the exponents in the basis element
	++ that x represents.
--   subscripts : %   -> L I
	-- subscripts(x) looks at the exponents in x and converts 
	-- them to the proper subscripts
     Nul        : NNI -> %
	++ Nul() gives the basis element 1 for the algebra generated
	++ by n generators.
 
   Implement == add
     Rep := L I

     x = y == x =$Rep y

     x < y ==
       null x            => not null y 
       null y            => false
       first x = first y => rest x < rest y
       first x > first y

     coerce(li:(L I)) == 
       for x in li repeat
         if not one? x and not zero? x then
           error "coerce: values can only be 0 and 1"
       li

     degree x         == (_+/x)::NNI

     exponents x      == copy(x @ Rep)

--   subscripts x     ==
--      cntr:I := 1
--      result: L I := []
--      for j in x repeat
--        if j = 1 then result := cons(cntr,result)
--        cntr:=cntr+1
--      reverse! result

     Nul n            == [0 for i in 1..n]

     coerce(x: %)         == coerce(x @ Rep)$(L I)

@
\section{domain ANTISYM AntiSymm}
<<domain ANTISYM AntiSymm>>=
)abbrev domain ANTISYM AntiSymm
++   Author: Larry A. Lambe
++   Date     : 01/26/91.
++   Revised  : May 19, 2013.
++
++   based on AntiSymmetric '89
++
++   Needs: ExtAlgBasis, FreeModule(Ring,OrderedSet), LALG, LALG-
++
++   Description: The domain of antisymmetric polynomials.
 
 
AntiSymm(R:Ring, lVar:List Symbol): Export == Implement where
  LALG ==> LeftAlgebra
  FMR  ==> FM(R,EAB)
  FM   ==> FreeModule
  I    ==> Integer
  L    ==> List
  EAB  ==> ExtAlgBasis     -- these are exponents of basis elements in order
  NNI  ==> NonNegativeInteger
  O    ==> OutputForm
  base ==> k
  coef ==> c
  Term ==> Record(k:EAB,c:R)
 
  Export == Join(LALG(R),RetractableTo(R),Functorial R) with
      leadingCoefficient : %           -> R
	++ leadingCoefficient(p) returns the leading
	++ coefficient of antisymmetric polynomial p.
--    leadingSupport       : %           -> EAB
      leadingBasisTerm     : %           -> %
	++ leadingBasisTerm(p) returns the leading
	++ basis term of antisymmetric polynomial p.
      reductum           : %           -> %
	++ reductum(p), where p is an antisymmetric polynomial,
        ++ returns p minus the leading
	++ term of p if p has at least two terms, and 0 otherwise.
      coefficient        : (%,%)     -> R 
	++ coefficient(p,u) returns the coefficient of 
	++ the term in p containing the basis term u if such 
        ++ a term exists, and 0 otherwise.
	++ Error: if the second argument u is not a basis element.
      generator          : NNI         -> %
	++ generator(n) returns the nth multiplicative generator,
	++ a basis term.
      exp                : L I         -> %
	++  exp([i1,...in]) returns \spad{u_1\^{i_1} ... u_n\^{i_n}}
      homogeneous?       : %           -> Boolean
	++  homogeneous?(p) tests if all of the terms of 
	++  p have the same degree.
      retractable?       : %           -> Boolean
	++  retractable?(p) tests if p is a 0-form,
	++  i.e., if degree(p) = 0.
      degree             : %           -> NNI
	++  degree(p) returns the homogeneous degree of p.

--    1 corresponds to the empty monomial Nul = [0,...,0]
--    from EAB.  In terms of the exterior algebra on X,
--    it corresponds to the identity element which lives
--    in homogeneous degree 0.
 
  Implement == FMR add
      Rep := L Term
      x,y :  EAB
      a,b :  %
      r   :  R
      m   :  I

      dim := #lVar

      1 == [[ Nul(dim)$EAB, 1$R ]]

      coefficient(a,u) ==
        not null u.rest => error "2nd argument must be a basis element"
        x := u.first.base
        for t in a repeat
          if t.base = x then return t.coef
          if t.base < x then return 0
        0

      retractable?(a) ==
        null a or (a.first.k  =  Nul(dim))

      retractIfCan(a):Union(R,"failed") ==
        null a               => 0$R
        a.first.k = Nul(dim) => leadingCoefficient a
        "failed"

      retract(a):R ==
        null a => 0$R
        leadingCoefficient a

      homogeneous? a ==
        null a => true
        siz := +/exponents(a.first.base)
        for ta in reductum a repeat
          +/exponents(ta.base) ~= siz => return false
        true

      degree a ==
        null a => 0$NNI
        homogeneous? a => (+/exponents(a.first.base)) :: NNI
        error "not a homogeneous element"

      zo : (I,I) -> L I
      zo(p,q) ==
        p = 0 => [1,q]
        q = 0 => [1,1]
        [0,0]

      getsgn : (EAB,EAB) -> I
      getsgn(x,y) ==
        sgn:I  := 0
        xx:L I := exponents x
        yy:L I := exponents y
        for i in 1 .. (dim-1) repeat
          xx  := rest xx
          sgn := sgn + (+/xx)*yy.i
        sgn rem 2 = 0 => 1
        -1

      Nalpha: (EAB,EAB) -> L I
      Nalpha(x,y) ==
        i:I := 1
        dum2:L I := [0 for i in 1..dim]
        for j in 1..dim repeat
          dum:=zo((exponents x).j,(exponents y).j)
          (i:= i*dum.1) = 0 => leave
          dum2.j := dum.2
        i = 0 => cons(i, dum2)
        cons(getsgn(x,y), dum2)

      a * b ==
        null a => 0
        null b => 0
        ((null a.rest) and (a.first.k = Nul(dim))) => a.first.c * b
        ((null b.rest) and (b.first.k = Nul(dim))) => b.first.c * a
        z:% := 0
        for tb in b repeat
          for ta in a repeat
            stuff:=Nalpha(ta.base,tb.base)
            r:=first(stuff)*ta.coef*tb.coef
            if r ~= 0 then z := z + [[rest(stuff)::EAB, r]]
        z

      coerce(r):% == 
        r = 0 => 0
        [ [Nul(dim), r] ]

      coerce(m):% == 
        m = 0 => 0
        [ [Nul(dim), m::R] ]

      characteristic == characteristic$R

      generator(j) == 
        -- j < 1 or j > dim => error "your subscript is out of range"
        -- error will be generated by dum.j if out of range
        dum:L I := [0 for i in 1..dim]
        dum.j:=1
        [[dum::EAB, 1::R]]

      exp(li:(L I)) ==  [[li::EAB, 1]]
 
      leadingBasisTerm a ==
        [[a.first.k, 1]]

      displayList:EAB -> O
      displayList(x):O ==
        le: L I := exponents(x)$EAB
        reduce(_*,[(lVar.i)::O for i in 1..dim | one?(le.i)])$L(O)


      makeTerm:(R,EAB) -> O
      makeTerm(r,x) ==
      -- we know that r ~= 0
        x = Nul(dim)$EAB  => r::O
        one? r => displayList(x)
--      r = 0 => 0$I::O
--      x = Nul(dim)$EAB  => r::O
        r::O * displayList(x)

      coerce(a):O ==
        zero? a     => 0$I::O
        null rest(a @ Rep) => 
                 t := first(a @ Rep)
                 makeTerm(t.coef,t.base)
        reduce(_+,[makeTerm(t.coef,t.base) for t in (a @ Rep)])$L(O)

@
\section{domain DERHAM DeRhamComplex}
<<domain DERHAM DeRhamComplex>>=
)abbrev domain DERHAM DeRhamComplex
++ Author: Larry A. Lambe
++ Date    : 01/26/91.
++ Revised : May 19, 2013.
++
++ based on code from '89 (AntiSymmetric)
++
++ Needs: LeftAlgebra, ExtAlgBasis, FreeMod(Ring,OrderedSet)
++
++ Description: The deRham complex of Euclidean space, that is, the
++ class of differential forms of arbitary degree over a coefficient ring.
++ See Flanders, Harley, Differential Forms, With Applications to the Physical
++ Sciences, New York, Academic Press, 1963.
 
DeRhamComplex(CoefRing,listIndVar:List Symbol): Export == Implement where
  CoefRing :  Join(Ring, OrderedSet)
  ASY     ==> AntiSymm(R,listIndVar)
  DIFRING ==> DifferentialRing
  LALG    ==> LeftAlgebra
  FMR     ==> FreeMod(R,EAB)
  I       ==> Integer
  L       ==> List
  EAB     ==> ExtAlgBasis  -- these are exponents of basis elements in order
  NNI     ==> NonNegativeInteger
  O       ==> OutputForm
  R       ==> Expression(CoefRing)
 
  Export == Join(LALG(R), RetractableTo(R),Functorial R) with
      leadingCoefficient : %           -> R
	++ leadingCoefficient(df) returns the leading
	++ coefficient of differential form df.
      leadingBasisTerm   : %           -> %
	++ leadingBasisTerm(df) returns the leading
	++ basis term of differential form df.
      reductum           : %           -> %
	++ reductum(df), where df is a differential form, 
        ++ returns df minus the leading
	++ term of df if df has two or more terms, and
	++ 0 otherwise.
      coefficient        : (%,%)     -> R 
	++ coefficient(df,u), where df is a differential form,
        ++ returns the coefficient of df containing the basis term u
        ++ if such a term exists, and 0 otherwise.
      generator          : NNI         -> %
	++ generator(n) returns the nth basis term for a differential form.
      homogeneous?       : %           -> Boolean
	++  homogeneous?(df) tests if all of the terms of 
	++  differential form df have the same degree.
      retractable?       : %           -> Boolean
	++  retractable?(df) tests if differential form df is a 0-form,
	++  i.e., if degree(df) = 0.
      degree             : %           -> I
	++  degree(df) returns the homogeneous degree of differential form df.
      totalDifferential    : R -> %
	++  totalDifferential(x) returns the total differential 
	++  (gradient) form for element x.
      exteriorDifferential : % -> %
	++  exteriorDifferential(df) returns the exterior 
	++  derivative (gradient, curl, divergence, ...) of
	++  the differential form df.

  Implement == ASY add
      Rep := ASY 

      dim := #listIndVar

      totalDifferential(f) ==
        divs:=[differentiate(f,listIndVar.i)*generator(i)$ASY for i in 1..dim]
        reduce("+",divs)

      termDiff : (R, %) -> %
      termDiff(r,e) ==
        totalDifferential(r) * e

      exteriorDifferential(x) ==
        x = 0 => 0
        termDiff(leadingCoefficient(x)$Rep,leadingBasisTerm x) + exteriorDifferential(reductum x)

      lv := [concat("d",string(liv))$String::Symbol for liv in listIndVar]

      displayList:EAB -> O
      displayList(x):O ==
        le: L I := exponents(x)$EAB
        reduce(_*,[(lv.i)::O for i in 1..dim | one?(le.i)])$L(O)

      makeTerm:(R,EAB) -> O
      makeTerm(r,x) ==
      -- we know that r ~= 0
        x = Nul(dim)$EAB  => r::O
        one? r => displayList(x)
        r::O * displayList(x)

      terms : % -> List Record(k: EAB, c: R)
      terms(a) ==
        -- it is the case that there are at least two terms in a
        a pretend List Record(k: EAB, c: R)
        
      coerce(a):O ==
        a           = 0$Rep => 0$I::O
        ta := terms a
--      reductum(a) = 0$Rep => makeTerm(leadingCoefficient a, a.first.k)
        null ta.rest => makeTerm(ta.first.c, ta.first.k)
        reduce(_+,[makeTerm(t.c,t.k) for t in ta])$L(O)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2013, Gabriel Dos Reis.
--All rights reversed.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<category LALG LeftAlgebra>>
<<domain EAB ExtAlgBasis>>
<<domain ANTISYM AntiSymm>>
<<domain DERHAM DeRhamComplex>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}