\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra defintef.spad} \author{Manuel Bronstein} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package DEFINTEF ElementaryFunctionDefiniteIntegration} <<package DEFINTEF ElementaryFunctionDefiniteIntegration>>= )abbrev package DEFINTEF ElementaryFunctionDefiniteIntegration ++ Definite integration of elementary functions. ++ Author: Manuel Bronstein ++ Date Created: 14 April 1992 ++ Date Last Updated: 2 February 1993 ++ Description: ++ \spadtype{ElementaryFunctionDefiniteIntegration} ++ provides functions to compute definite ++ integrals of elementary functions. ElementaryFunctionDefiniteIntegration(R, F): Exports == Implementation where R : Join(EuclideanDomain, CharacteristicZero, RetractableTo Integer, LinearlyExplicitRingOver Integer) F : Join(TranscendentalFunctionCategory, PrimitiveFunctionCategory, AlgebraicallyClosedFunctionSpace R) B ==> Boolean SE ==> Symbol Z ==> Integer P ==> SparseMultivariatePolynomial(R, K) K ==> Kernel F UP ==> SparseUnivariatePolynomial F OFE ==> OrderedCompletion F U ==> Union(f1:OFE, f2:List OFE, fail:"failed", pole:"potentialPole") Exports ==> with integrate: (F, SegmentBinding OFE) -> U ++ integrate(f, x = a..b) returns the integral of ++ \spad{f(x)dx} from a to b. ++ Error: if f has a pole for x between a and b. integrate: (F, SegmentBinding OFE, String) -> U ++ integrate(f, x = a..b, "noPole") returns the ++ integral of \spad{f(x)dx} from a to b. ++ If it is not possible to check whether f has a pole for x ++ between a and b (because of parameters), then this function ++ will assume that f has no such pole. ++ Error: if f has a pole for x between a and b or ++ if the last argument is not "noPole". innerint: (F, SE, OFE, OFE, B) -> U ++ innerint(f, x, a, b, ignore?) should be local but conditional Implementation ==> add import ElementaryFunctionSign(R, F) import DefiniteIntegrationTools(R, F) import FunctionSpaceIntegration(R, F) polyIfCan : (P, K) -> Union(UP, "failed") int : (F, SE, OFE, OFE, B) -> U nopole : (F, SE, K, OFE, OFE) -> U checkFor0 : (P, K, OFE, OFE) -> Union(B, "failed") checkSMP : (P, SE, K, OFE, OFE) -> Union(B, "failed") checkForPole: (F, SE, K, OFE, OFE) -> Union(B, "failed") posit : (F, SE, K, OFE, OFE) -> Union(B, "failed") negat : (F, SE, K, OFE, OFE) -> Union(B, "failed") moreThan : (OFE, Fraction Z) -> Union(B, "failed") if R has Join(ConvertibleTo Pattern Integer, PatternMatchable Integer) and F has SpecialFunctionCategory then import PatternMatchIntegration(R, F) innerint(f, x, a, b, ignor?) == ((u := int(f, x, a, b, ignor?)) case f1) or (u case f2) or ((v := pmintegrate(f, x, a, b)) case "failed") => u [v::F::OFE] else innerint(f, x, a, b, ignor?) == int(f, x, a, b, ignor?) integrate(f:F, s:SegmentBinding OFE) == innerint(f, variable s, lo segment s, hi segment s, false) integrate(f:F, s:SegmentBinding OFE, str:String) == innerint(f, variable s, lo segment s, hi segment s, ignore? str) int(f, x, a, b, ignor?) == a = b => [0::OFE] k := kernel(x)@Kernel(F) (z := checkForPole(f, x, k, a, b)) case "failed" => ignor? => nopole(f, x, k, a, b) ["potentialPole"] z::B => error "integrate: pole in path of integration" nopole(f, x, k, a, b) checkForPole(f, x, k, a, b) == ((u := checkFor0(d := denom f, k, a, b)) case "failed") or (u::B) => u ((u := checkSMP(d, x, k, a, b)) case "failed") or (u::B) => u checkSMP(numer f, x, k, a, b) -- true if p has a zero between a and b exclusive checkFor0(p, x, a, b) == (u := polyIfCan(p, x)) case UP => checkForZero(u::UP, a, b, false) (v := isTimes p) case List(P) => for t in v::List(P) repeat ((w := checkFor0(t, x, a, b)) case "failed") or (w::B) => return w false (z := isExpt p) case "failed" => "failed" k := z.var -- functions with no real zeros is?(k, 'exp) or is?(k, 'acot) or is?(k, 'cosh) => false -- special case for log is?(k, 'log) => (w := moreThan(b, 1)) case "failed" or not(w::B) => w moreThan(-a, -1) "failed" -- returns true if a > b, false if a < b, "failed" if can't decide moreThan(a, b) == (r := retractIfCan(a)@Union(F, "failed")) case "failed" => -- infinite positive? whatInfinity(a) (u := retractIfCan(r::F)@Union(Fraction Z, "failed")) case "failed" => "failed" u::Fraction(Z) > b -- true if p has a pole between a and b checkSMP(p, x, k, a, b) == (u := polyIfCan(p, k)) case UP => false (v := isTimes p) case List(P) => for t in v::List(P) repeat ((w := checkSMP(t, x, k, a, b)) case "failed") or (w::B) => return w false (v := isPlus p) case List(P) => n := 0 -- number of summand having a pole for t in v::List(P) repeat (w := checkSMP(t, x, k, a, b)) case "failed" => return w if w::B then n := n + 1 zero? n => false -- no summand has a pole one? n => true -- only one summand has a pole "failed" -- at least 2 summands have a pole (z := isExpt p) case "failed" => "failed" kk := z.var -- nullary operators have no poles nullary? operator kk => false f := first argument kk -- functions which are defined over all the reals: is?(kk, 'exp) or is?(kk, 'sin) or is?(kk, 'cos) or is?(kk, 'sinh) or is?(kk, 'cosh) or is?(kk, 'tanh) or is?(kk, 'sech) or is?(kk, 'atan) or is?(kk, 'acot) or is?(kk, 'asinh) => checkForPole(f, x, k, a, b) -- functions which are defined on (-1,+1): is?(kk, 'asin) or is?(kk, 'acos) or is?(kk, 'atanh) => ((w := checkForPole(f, x, k, a, b)) case "failed") or (w::B) => w ((w := posit(f - 1, x, k, a, b)) case "failed") or (w::B) => w negat(f + 1, x, k, a, b) -- functions which are defined on (+1, +infty): is?(kk, 'acosh) => ((w := checkForPole(f, x, k, a, b)) case "failed") or (w::B) => w negat(f - 1, x, k, a, b) -- functions which are defined on (0, +infty): is?(kk, 'log) => ((w := checkForPole(f, x, k, a, b)) case "failed") or (w::B) => w negat(f, x, k, a, b) "failed" -- returns true if it is certain that f takes at least one strictly positive -- value for x in (a,b), false if it is certain that f takes no strictly -- positive value in (a,b), "failed" otherwise -- f must be known to have no poles in (a,b) posit(f, x, k, a, b) == z := (r := retractIfCan(a)@Union(F, "failed")) case "failed" => sign(f, x, a) sign(f, x, r::F, "right") (b1 := z case Z) and positive?(z::Z) => true z := (r := retractIfCan(b)@Union(F, "failed")) case "failed" => sign(f, x, b) sign(f, x, r::F, "left") (b2 := z case Z) and positive?(z::Z) => true b1 and b2 => ((w := checkFor0(numer f, k, a, b)) case "failed") or (w::B) => "failed" false "failed" -- returns true if it is certain that f takes at least one strictly negative -- value for x in (a,b), false if it is certain that f takes no strictly -- negative value in (a,b), "failed" otherwise -- f must be known to have no poles in (a,b) negat(f, x, k, a, b) == z := (r := retractIfCan(a)@Union(F, "failed")) case "failed" => sign(f, x, a) sign(f, x, r::F, "right") (b1 := z case Z) and negative?(z::Z) => true z := (r := retractIfCan(b)@Union(F, "failed")) case "failed" => sign(f, x, b) sign(f, x, r::F, "left") (b2 := z case Z) and negative?(z::Z) => true b1 and b2 => ((w := checkFor0(numer f, k, a, b)) case "failed") or (w::B) => "failed" false "failed" -- returns a UP if p is only a poly w.r.t. the kernel x polyIfCan(p, x) == q := univariate(p, x) ans:UP := 0 while q ~= 0 repeat member?(x, tower(c := leadingCoefficient(q)::F)) => return "failed" ans := ans + monomial(c, degree q) q := reductum q ans -- integrate f for x between a and b assuming that f has no pole in between nopole(f, x, k, a, b) == (u := integrate(f, x)) case F => (v := computeInt(k, u::F, a, b, false)) case "failed" => ["failed"] [v::OFE] ans := empty()$List(OFE) for g in u::List(F) repeat (v := computeInt(k, g, a, b, false)) case "failed" => return ["failed"] ans := concat!(ans, [v::OFE]) [ans] @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package DEFINTEF ElementaryFunctionDefiniteIntegration>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}