\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra defaults.spad} \author{Michael Monagan} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package REPSQ RepeatedSquaring} <<package REPSQ RepeatedSquaring>>= )abbrev package REPSQ RepeatedSquaring ++ Repeated Squaring ++ Description: ++ Implements exponentiation by repeated squaring ++ RelatedOperations: expt RepeatedSquaring(S): Exports == Implementation where S: SetCategory with "*":(%,%)->% ++ x*y returns the product of x and y Exports == with expt: (S,PositiveInteger) -> S ++ expt(r, i) computes r**i by repeated squaring Implementation == add x: S n: PositiveInteger expt(x, n) == one? n => x odd?(n)$Integer=> x * expt(x*x,shift(n,-1) pretend PositiveInteger) expt(x*x,shift(n,-1) pretend PositiveInteger) @ \section{package REPDB RepeatedDoubling} <<package REPDB RepeatedDoubling>>= )abbrev package REPDB RepeatedDoubling ++ Repeated Doubling ++ Integer multiplication by repeated doubling. ++ Description: ++ Implements multiplication by repeated addition ++ RelatedOperations: * RepeatedDoubling(S):Exports ==Implementation where S: SetCategory with "+":(%,%)->% ++ x+y returns the sum of x and y Exports == with double: (PositiveInteger,S) -> S ++ double(i, r) multiplies r by i using repeated doubling. Implementation == add x: S n: PositiveInteger double(n,x) == one? n => x odd?(n)$Integer => x + double(shift(n,-1) pretend PositiveInteger,(x+x)) double(shift(n,-1) pretend PositiveInteger,(x+x)) @ \section{package FLASORT FiniteLinearAggregateSort} <<package FLASORT FiniteLinearAggregateSort>>= )abbrev package FLASORT FiniteLinearAggregateSort ++ FiniteLinearAggregateSort ++ Sort package (in-place) for ShallowlyMutable Finite Linear Aggregates ++ Author: Michael Monagan Sep/88 ++ RelatedOperations: sort ++ Description: ++ This package exports 3 sorting algorithms which work over ++ FiniteLinearAggregates. FiniteLinearAggregateSort(S, V): Exports == Implementation where S: Type V: Join(FiniteLinearAggregate S,ShallowlyMutableAggregate S) B ==> Boolean I ==> Integer Exports ==> with quickSort: ((S, S) -> B, V) -> V ++ quickSort(f, agg) sorts the aggregate agg with the ordering function ++ f using the quicksort algorithm. heapSort : ((S, S) -> B, V) -> V ++ heapSort(f, agg) sorts the aggregate agg with the ordering function ++ f using the heapsort algorithm. shellSort: ((S, S) -> B, V) -> V ++ shellSort(f, agg) sorts the aggregate agg with the ordering function ++ f using the shellSort algorithm. Implementation ==> add siftUp : ((S, S) -> B, V, I, I) -> Void partition: ((S, S) -> B, V, I, I, I) -> I QuickSort: ((S, S) -> B, V, I, I) -> V quickSort(l, r) == QuickSort(l, r, minIndex r, maxIndex r) siftUp(l, r, i, n) == t := qelt(r, i) while (j := 2*i+1) < n repeat if (k := j+1) < n and l(qelt(r, j), qelt(r, k)) then j := k if l(t,qelt(r,j)) then qsetelt!(r, i, qelt(r, j)) qsetelt!(r, j, t) i := j else leave heapSort(l, r) == not zero? minIndex r => error "not implemented" n := (#r)::I for k in shift(n,-1) - 1 .. 0 by -1 repeat siftUp(l, r, k, n) for k in n-1 .. 1 by -1 repeat swap!(r, 0, k) siftUp(l, r, 0, k) r partition(l, r, i, j, k) == -- partition r[i..j] such that r.s <= r.k <= r.t x := qelt(r, k) t := qelt(r, i) qsetelt!(r, k, qelt(r, j)) while i < j repeat if l(x,t) then qsetelt!(r, j, t) j := j-1 t := qsetelt!(r, i, qelt(r, j)) else (i := i+1; t := qelt(r, i)) qsetelt!(r, j, x) j QuickSort(l, r, i, j) == n := j - i if one? n and l(qelt(r, j), qelt(r, i)) then swap!(r, i, j) n < 2 => return r -- for the moment split at the middle item k := partition(l, r, i, j, i + shift(n,-1)) QuickSort(l, r, i, k - 1) QuickSort(l, r, k + 1, j) shellSort(l, r) == m := minIndex r n := maxIndex r -- use Knuths gap sequence: 1,4,13,40,121,... g := 1 while g <= (n-m) repeat g := 3*g+1 g := g quo 3 while positive? g repeat for i in m+g..n repeat j := i-g while j >= m and l(qelt(r, j+g), qelt(r, j)) repeat swap!(r,j,j+g) j := j-g g := g quo 3 r @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package REPSQ RepeatedSquaring>> <<package REPDB RepeatedDoubling>> <<package FLASORT FiniteLinearAggregateSort>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}