\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra ddfact.spad}
\author{Patrizia Gianni, Barry Trager}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package DDFACT DistinctDegreeFactorize}
<<package DDFACT DistinctDegreeFactorize>>=
)abbrev package DDFACT DistinctDegreeFactorize
++ Author: P. Gianni, B.Trager
++ Date Created: 1983
++ Date Last Updated: 22 November 1993
++ Basic Functions: factor, irreducible?
++ Related Constructors: PrimeField, FiniteField
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++   Package for the factorization of a univariate polynomial with
++   coefficients in a finite field. The algorithm used is the
++   "distinct degree" algorithm of Cantor-Zassenhaus, modified
++   to use trace instead of the norm and a table for computing
++   Frobenius as suggested by Naudin and Quitte .
    
DistinctDegreeFactorize(F,FP): C == T
  where
   F  : FiniteFieldCategory
   FP : UnivariatePolynomialCategory(F)
 
   fUnion ==> Union("nil", "sqfr", "irred", "prime")
   FFE    ==> Record(flg:fUnion, fctr:FP, xpnt:Integer)
   NNI       == NonNegativeInteger
   Z         == Integer
   fact      == Record(deg : NNI,prod : FP)
   ParFact   == Record(irr:FP,pow:Z)
   FinalFact == Record(cont:F,factors:List(ParFact))
 
   C == with
      factor        :         FP      -> Factored FP
        ++ factor(p) produces the complete factorization of the polynomial p.
      factorSquareFree :         FP      -> Factored FP
        ++ factorSquareFree(p) produces the complete factorization of the 
        ++ square free polynomial p.
      distdfact       :   (FP,Boolean)  -> FinalFact
        ++ distdfact(p,sqfrflag) produces the complete factorization
        ++ of the polynomial p returning an internal data structure.
        ++ If argument sqfrflag is true, the polynomial is assumed square free.
      separateDegrees :         FP      -> List fact
        ++ separateDegrees(p) splits the square free polynomial p into 
        ++ factors each of which is a product of irreducibles of the same degree.
      separateFactors :  List fact  -> List FP
        ++ separateFactors(lfact) takes the list produced by 
        ++ \spadfunFrom{separateDegrees}{DistinctDegreeFactorization}
        ++ and produces the complete list of factors.
      exptMod         :   (FP,NNI,FP)   -> FP
        ++ exptMod(u,k,v) raises the polynomial u to the kth power
        ++ modulo the polynomial v.
      trace2PowMod     :   (FP,NNI,FP)   -> FP
        ++ trace2PowMod(u,k,v) produces the sum of \spad{u**(2**i)} for i running
        ++ from 1 to k all computed modulo the polynomial v.
      tracePowMod     :   (FP,NNI,FP)   -> FP
        ++ tracePowMod(u,k,v) produces the sum of \spad{u**(q**i)} 
        ++ for i running and q= size F
      irreducible?    :         FP      -> Boolean
        ++ irreducible?(p) tests whether the polynomial p is irreducible.
 
 
   T == add
      --declarations
      D:=ModMonic(F,FP)
      import UnivariatePolynomialSquareFree(F,FP)
 
      --local functions
      notSqFr : (FP,FP -> List(FP)) -> List(ParFact)
      ddffact : FP -> List(FP)
      ddffact1 : (FP,Boolean) -> List fact
      ranpol :         NNI       -> FP
      
      charF : Boolean := characteristic()$F = 2

      --construct a random polynomial of random degree < d
      ranpol(d:NNI):FP ==
        k1: NNI := 0
        while k1 = 0 repeat k1 := random d
        -- characteristic F = 2
        charF =>
           u:=0$FP
           for j in 1..k1 repeat u:=u+monomial(random()$F,j)
           u
        u := monomial(1,k1)
        for j in 0..k1-1 repeat u:=u+monomial(random()$F,j)
        u
 
      notSqFr(m:FP,appl: FP->List(FP)):List(ParFact) ==
        factlist : List(ParFact) :=empty()
        llf : List FFE
        fln :List(FP) := empty()
        if (lcm:=leadingCoefficient m)^=1 then m:=(inv lcm)*m
        llf:= factorList(squareFree(m))
        for lf in llf repeat
          d1:= lf.xpnt
          pol := lf.fctr
          if (lcp:=leadingCoefficient pol)^=1 then pol := (inv lcp)*pol
          degree pol=1 => factlist:=cons([pol,d1]$ParFact,factlist)
          fln := appl(pol)
          factlist :=append([[pf,d1]$ParFact for pf in fln],factlist)
        factlist
 
      -- compute u**k mod v (requires call to setPoly of multiple of v)
      -- characteristic not equal 2
      exptMod(u:FP,k:NNI,v:FP):FP == (reduce(u)$D**k):FP rem v
 
      -- compute u**k mod v (requires call to setPoly of multiple of v)
      -- characteristic equal 2
      trace2PowMod(u:FP,k:NNI,v:FP):FP ==
        uu:=u
        for i in 1..k repeat uu:=(u+uu*uu) rem v
        uu

      -- compute u+u**q+..+u**(q**k) mod v 
      -- (requires call to setPoly of multiple of v) where q=size< F
      tracePowMod(u:FP,k:NNI,v:FP):FP ==
        u1 :D :=reduce(u)$D
        uu : D := u1
        for i in 1..k repeat uu:=(u1+frobenius uu) 
        (lift uu) rem v

      -- compute u**(1+q+..+q**k) rem v where q=#F 
      -- (requires call to setPoly of multiple of v)
      -- frobenius map is used
      normPowMod(u:FP,k:NNI,v:FP):FP ==
        u1 :D :=reduce(u)$D
        uu : D := u1
        for i in 1..k repeat uu:=(u1*frobenius uu) 
        (lift uu) rem v
 
      --find the factorization of m as product of factors each containing
      --terms of equal degree .
      -- if testirr=true the function returns the first factor found
      ddffact1(m:FP,testirr:Boolean):List(fact) ==
        p:=size$F
        dg:NNI :=0
        ddfact:List(fact):=empty()
        --evaluation of x**p mod m
        k1:NNI
        u:= m
        du := degree u
        setPoly u
        mon: FP := monomial(1,1)
        v := mon
        for k1 in 1.. while k1 <= (du quo 2) repeat
            v := lift frobenius reduce(v)$D
            g := gcd(v-mon,u)
            dg := degree g
            dg =0  => "next k1"
            if leadingCoefficient g ^=1 then g := (inv leadingCoefficient g)*g
            ddfact := cons([k1,g]$fact,ddfact)
            testirr => return ddfact
            u := u quo g
            du := degree u
            du = 0 => return ddfact
            setPoly u
        cons([du,u]$fact,ddfact)
 
      -- test irreducibility
      irreducible?(m:FP):Boolean ==
        mf:fact:=first ddffact1(m,true)
        degree m = mf.deg
 
      --export ddfact1
      separateDegrees(m:FP):List(fact) == ddffact1(m,false)
 
      --find the complete factorization of m, using the result of ddfact1
      separateFactors(distf : List fact) :List FP ==
        ddfact := distf
        n1:Integer
        p1:=size()$F
        if charF then n1:=length(p1)-1
        newaux,aux,ris : List FP
        ris := empty()
        t,fprod : FP
        for ffprod in ddfact repeat
          fprod := ffprod.prod
          d := ffprod.deg
          degree fprod = d => ris := cons(fprod,ris)
          aux:=[fprod]
          setPoly fprod
          while ^(empty? aux) repeat
            t := ranpol(2*d)
            if charF then t:=trace2PowMod(t,(n1*d-1)::NNI,fprod)
            else t:=exptMod(tracePowMod(t,(d-1)::NNI,fprod),
                                     (p1 quo 2)::NNI,fprod)-1$FP
            newaux:=empty()
            for u in aux repeat
                g := gcd(u,t)
                dg:= degree g
                dg=0 or dg = degree u => newaux:=cons(u,newaux)
                v := u quo g
                if dg=d then ris := cons(inv(leadingCoefficient g)*g,ris)
                        else newaux := cons(g,newaux)
                if degree v=d then ris := cons(inv(leadingCoefficient v)*v,ris)
                              else newaux := cons(v,newaux)
            aux:=newaux
        ris
 
      --distinct degree algorithm for monic ,square-free polynomial
      ddffact(m:FP):List(FP)==
        ddfact:=ddffact1(m,false)
        empty? ddfact => [m]
        separateFactors ddfact
 
      --factorize a general polynomial with distinct degree algorithm
      --if test=true no check is executed on square-free
      distdfact(m:FP,test:Boolean):FinalFact ==
        factlist: List(ParFact):= empty()
        fln : List(FP) :=empty()
 
        --make m monic
        if (lcm := leadingCoefficient m) ^=1 then m := (inv lcm)*m
 
        --is x**d factor of m?
        if (d := minimumDegree m)>0 then
          m := (monicDivide (m,monomial(1,d))).quotient
          factlist := [[monomial(1,1),d]$ParFact]
        d:=degree m
 
        --is m constant?
        d=0 => [lcm,factlist]$FinalFact
 
        --is m linear?
        d=1 => [lcm,cons([m,d]$ParFact,factlist)]$FinalFact
 
        --m is square-free
        test =>
          fln := ddffact m
          factlist := append([[pol,1]$ParFact for pol in fln],factlist)
          [lcm,factlist]$FinalFact
 
        --factorize the monic,square-free terms
        factlist:= append(notSqFr(m,ddffact),factlist)
        [lcm,factlist]$FinalFact
 
      --factorize the polynomial m
      factor(m:FP) ==
        m = 0 => 0
        flist := distdfact(m,false)
        makeFR(flist.cont::FP,[["prime",u.irr,u.pow]$FFE 
                                 for u in flist.factors])


      --factorize the square free polynomial m
      factorSquareFree(m:FP) ==
        m = 0 => 0
        flist := distdfact(m,true)
        makeFR(flist.cont::FP,[["prime",u.irr,u.pow]$FFE 
                                 for u in flist.factors])

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
 
--The Berlekamp package for the finite factorization is in FINFACT.
 
<<package DDFACT DistinctDegreeFactorize>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}