\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra ddfact.spad} \author{Patrizia Gianni, Barry Trager} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package DDFACT DistinctDegreeFactorize} <<package DDFACT DistinctDegreeFactorize>>= )abbrev package DDFACT DistinctDegreeFactorize ++ Author: P. Gianni, B.Trager ++ Date Created: 1983 ++ Date Last Updated: 22 November 1993 ++ Basic Functions: factor, irreducible? ++ Related Constructors: PrimeField, FiniteField ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ Package for the factorization of a univariate polynomial with ++ coefficients in a finite field. The algorithm used is the ++ "distinct degree" algorithm of Cantor-Zassenhaus, modified ++ to use trace instead of the norm and a table for computing ++ Frobenius as suggested by Naudin and Quitte . DistinctDegreeFactorize(F,FP): C == T where F : FiniteFieldCategory FP : UnivariatePolynomialCategory(F) fUnion ==> Union("nil", "sqfr", "irred", "prime") FFE ==> Record(flg:fUnion, fctr:FP, xpnt:Integer) NNI == NonNegativeInteger Z == Integer fact == Record(deg : NNI,prod : FP) ParFact == Record(irr:FP,pow:Z) FinalFact == Record(cont:F,factors:List(ParFact)) C == with factor : FP -> Factored FP ++ factor(p) produces the complete factorization of the polynomial p. factorSquareFree : FP -> Factored FP ++ factorSquareFree(p) produces the complete factorization of the ++ square free polynomial p. distdfact : (FP,Boolean) -> FinalFact ++ distdfact(p,sqfrflag) produces the complete factorization ++ of the polynomial p returning an internal data structure. ++ If argument sqfrflag is true, the polynomial is assumed square free. separateDegrees : FP -> List fact ++ separateDegrees(p) splits the square free polynomial p into ++ factors each of which is a product of irreducibles of the same degree. separateFactors : List fact -> List FP ++ separateFactors(lfact) takes the list produced by ++ \spadfunFrom{separateDegrees}{DistinctDegreeFactorization} ++ and produces the complete list of factors. exptMod : (FP,NNI,FP) -> FP ++ exptMod(u,k,v) raises the polynomial u to the kth power ++ modulo the polynomial v. trace2PowMod : (FP,NNI,FP) -> FP ++ trace2PowMod(u,k,v) produces the sum of \spad{u**(2**i)} for i running ++ from 1 to k all computed modulo the polynomial v. tracePowMod : (FP,NNI,FP) -> FP ++ tracePowMod(u,k,v) produces the sum of \spad{u**(q**i)} ++ for i running and q= size F irreducible? : FP -> Boolean ++ irreducible?(p) tests whether the polynomial p is irreducible. T == add --declarations D:=ModMonic(F,FP) import UnivariatePolynomialSquareFree(F,FP) --local functions notSqFr : (FP,FP -> List(FP)) -> List(ParFact) ddffact : FP -> List(FP) ddffact1 : (FP,Boolean) -> List fact ranpol : NNI -> FP charF : Boolean := characteristic()$F = 2 --construct a random polynomial of random degree < d ranpol(d:NNI):FP == k1: NNI := 0 while k1 = 0 repeat k1 := random d -- characteristic F = 2 charF => u:=0$FP for j in 1..k1 repeat u:=u+monomial(random()$F,j) u u := monomial(1,k1) for j in 0..k1-1 repeat u:=u+monomial(random()$F,j) u notSqFr(m:FP,appl: FP->List(FP)):List(ParFact) == factlist : List(ParFact) :=empty() llf : List FFE fln :List(FP) := empty() if (lcm:=leadingCoefficient m)^=1 then m:=(inv lcm)*m llf:= factorList(squareFree(m)) for lf in llf repeat d1:= lf.xpnt pol := lf.fctr if (lcp:=leadingCoefficient pol)^=1 then pol := (inv lcp)*pol degree pol=1 => factlist:=cons([pol,d1]$ParFact,factlist) fln := appl(pol) factlist :=append([[pf,d1]$ParFact for pf in fln],factlist) factlist -- compute u**k mod v (requires call to setPoly of multiple of v) -- characteristic not equal 2 exptMod(u:FP,k:NNI,v:FP):FP == (reduce(u)$D**k):FP rem v -- compute u**k mod v (requires call to setPoly of multiple of v) -- characteristic equal 2 trace2PowMod(u:FP,k:NNI,v:FP):FP == uu:=u for i in 1..k repeat uu:=(u+uu*uu) rem v uu -- compute u+u**q+..+u**(q**k) mod v -- (requires call to setPoly of multiple of v) where q=size< F tracePowMod(u:FP,k:NNI,v:FP):FP == u1 :D :=reduce(u)$D uu : D := u1 for i in 1..k repeat uu:=(u1+frobenius uu) (lift uu) rem v -- compute u**(1+q+..+q**k) rem v where q=#F -- (requires call to setPoly of multiple of v) -- frobenius map is used normPowMod(u:FP,k:NNI,v:FP):FP == u1 :D :=reduce(u)$D uu : D := u1 for i in 1..k repeat uu:=(u1*frobenius uu) (lift uu) rem v --find the factorization of m as product of factors each containing --terms of equal degree . -- if testirr=true the function returns the first factor found ddffact1(m:FP,testirr:Boolean):List(fact) == p:=size$F dg:NNI :=0 ddfact:List(fact):=empty() --evaluation of x**p mod m k1:NNI u:= m du := degree u setPoly u mon: FP := monomial(1,1) v := mon for k1 in 1.. while k1 <= (du quo 2) repeat v := lift frobenius reduce(v)$D g := gcd(v-mon,u) dg := degree g dg =0 => "next k1" if leadingCoefficient g ^=1 then g := (inv leadingCoefficient g)*g ddfact := cons([k1,g]$fact,ddfact) testirr => return ddfact u := u quo g du := degree u du = 0 => return ddfact setPoly u cons([du,u]$fact,ddfact) -- test irreducibility irreducible?(m:FP):Boolean == mf:fact:=first ddffact1(m,true) degree m = mf.deg --export ddfact1 separateDegrees(m:FP):List(fact) == ddffact1(m,false) --find the complete factorization of m, using the result of ddfact1 separateFactors(distf : List fact) :List FP == ddfact := distf n1:Integer p1:=size()$F if charF then n1:=length(p1)-1 newaux,aux,ris : List FP ris := empty() t,fprod : FP for ffprod in ddfact repeat fprod := ffprod.prod d := ffprod.deg degree fprod = d => ris := cons(fprod,ris) aux:=[fprod] setPoly fprod while ^(empty? aux) repeat t := ranpol(2*d) if charF then t:=trace2PowMod(t,(n1*d-1)::NNI,fprod) else t:=exptMod(tracePowMod(t,(d-1)::NNI,fprod), (p1 quo 2)::NNI,fprod)-1$FP newaux:=empty() for u in aux repeat g := gcd(u,t) dg:= degree g dg=0 or dg = degree u => newaux:=cons(u,newaux) v := u quo g if dg=d then ris := cons(inv(leadingCoefficient g)*g,ris) else newaux := cons(g,newaux) if degree v=d then ris := cons(inv(leadingCoefficient v)*v,ris) else newaux := cons(v,newaux) aux:=newaux ris --distinct degree algorithm for monic ,square-free polynomial ddffact(m:FP):List(FP)== ddfact:=ddffact1(m,false) empty? ddfact => [m] separateFactors ddfact --factorize a general polynomial with distinct degree algorithm --if test=true no check is executed on square-free distdfact(m:FP,test:Boolean):FinalFact == factlist: List(ParFact):= empty() fln : List(FP) :=empty() --make m monic if (lcm := leadingCoefficient m) ^=1 then m := (inv lcm)*m --is x**d factor of m? if (d := minimumDegree m)>0 then m := (monicDivide (m,monomial(1,d))).quotient factlist := [[monomial(1,1),d]$ParFact] d:=degree m --is m constant? d=0 => [lcm,factlist]$FinalFact --is m linear? d=1 => [lcm,cons([m,d]$ParFact,factlist)]$FinalFact --m is square-free test => fln := ddffact m factlist := append([[pol,1]$ParFact for pol in fln],factlist) [lcm,factlist]$FinalFact --factorize the monic,square-free terms factlist:= append(notSqFr(m,ddffact),factlist) [lcm,factlist]$FinalFact --factorize the polynomial m factor(m:FP) == m = 0 => 0 flist := distdfact(m,false) makeFR(flist.cont::FP,[["prime",u.irr,u.pow]$FFE for u in flist.factors]) --factorize the square free polynomial m factorSquareFree(m:FP) == m = 0 => 0 flist := distdfact(m,true) makeFR(flist.cont::FP,[["prime",u.irr,u.pow]$FFE for u in flist.factors]) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> --The Berlekamp package for the finite factorization is in FINFACT. <<package DDFACT DistinctDegreeFactorize>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}