\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra d01routine.spad} \author{Brian Dupee} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain D01AJFA d01ajfAnnaType} <<domain D01AJFA d01ajfAnnaType>>= )abbrev domain D01AJFA d01ajfAnnaType ++ Author: Brian Dupee ++ Date Created: March 1994 ++ Date Last Updated: December 1997 ++ Basic Operations: measure, numericalIntegration ++ Related Constructors: Result, RoutinesTable ++ Description: ++ \axiomType{d01ajfAnnaType} is a domain of \axiomType{NumericalIntegrationCategory} ++ for the NAG routine D01AJF, a general numerical integration routine which ++ can handle some singularities in the input function. The function ++ \axiomFun{measure} measures the usefulness of the routine D01AJF ++ for the given problem. The function \axiomFun{numericalIntegration} ++ performs the integration by using \axiomType{NagIntegrationPackage}. d01ajfAnnaType(): NumericalIntegrationCategory == Result add EF2 ==> ExpressionFunctions2 EDF ==> Expression DoubleFloat LDF ==> List DoubleFloat SDF ==> Stream DoubleFloat DF ==> DoubleFloat FI ==> Fraction Integer EFI ==> Expression Fraction Integer SOCDF ==> Segment OrderedCompletion DoubleFloat NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) MDNIA ==> Record(fn:EDF,range:List SOCDF,abserr:DF,relerr:DF) INT ==> Integer BOP ==> BasicOperator S ==> Symbol ST ==> String LST ==> List String RT ==> RoutinesTable Rep:=Result import Rep, NagIntegrationPackage, d01AgentsPackage measure(R:RT,args:NIA) == ext:Result := empty()$Result pp:SDF := singularitiesOf(args) not (empty?(pp)$SDF) => [0.1,"d01ajf: There is a possible problem at the following point(s): " commaSeparate(sdf2lst(pp)) ,ext] [getMeasure(R,d01ajf :: S)$RT, "The general routine d01ajf is our default",ext] numericalIntegration(args:NIA,hints:Result) == ArgsFn := map(convert(#1)$DF,args.fn)$EF2(DF,Float) b:Float := getButtonValue("d01ajf","functionEvaluations")$AttributeButtons fEvals:INT := wholePart exp(1.1513*(1.0/(2.0*(1.0-b)))) iw:INT := 75*fEvals f : Union(fn:FileName,fp:Asp1(F)) := [retract(ArgsFn)$Asp1(F)] d01ajf(getlo(args.range),gethi(args.range),args.abserr,args.relerr,4*iw,iw,-1,f) @ \section{domain D01AKFA d01akfAnnaType} <<domain D01AKFA d01akfAnnaType>>= )abbrev domain D01AKFA d01akfAnnaType ++ Author: Brian Dupee ++ Date Created: March 1994 ++ Date Last Updated: December 1997 ++ Basic Operations: measure, numericalIntegration ++ Related Constructors: Result, RoutinesTable ++ Description: ++ \axiomType{d01akfAnnaType} is a domain of \axiomType{NumericalIntegrationCategory} ++ for the NAG routine D01AKF, a numerical integration routine which is ++ is suitable for oscillating, non-singular functions. The function ++ \axiomFun{measure} measures the usefulness of the routine D01AKF ++ for the given problem. The function \axiomFun{numericalIntegration} ++ performs the integration by using \axiomType{NagIntegrationPackage}. d01akfAnnaType(): NumericalIntegrationCategory == Result add EF2 ==> ExpressionFunctions2 EDF ==> Expression DoubleFloat LDF ==> List DoubleFloat SDF ==> Stream DoubleFloat DF ==> DoubleFloat FI ==> Fraction Integer EFI ==> Expression Fraction Integer SOCDF ==> Segment OrderedCompletion DoubleFloat NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) MDNIA ==> Record(fn:EDF,range:List SOCDF,abserr:DF,relerr:DF) INT ==> Integer BOP ==> BasicOperator S ==> Symbol ST ==> String LST ==> List String RT ==> RoutinesTable Rep:=Result import Rep, d01AgentsPackage, NagIntegrationPackage measure(R:RT,args:NIA) == ext:Result := empty()$Result pp:SDF := singularitiesOf(args) not (empty?(pp)$SDF) => [0.0,"d01akf: There is a possible problem at the following point(s): " commaSeparate(sdf2lst(pp)) ,ext] o:Float := functionIsOscillatory(args) one := 1.0 m:Float := (getMeasure(R,d01akf@S)$RT)*(one-one/(one+sqrt(o)))**2 m > 0.8 => [m,"d01akf: The expression shows much oscillation",ext] m > 0.6 => [m,"d01akf: The expression shows some oscillation",ext] m > 0.5 => [m,"d01akf: The expression shows little oscillation",ext] [m,"d01akf: The expression shows little or no oscillation",ext] numericalIntegration(args:NIA,hints:Result) == ArgsFn := map(convert(#1)$DF,args.fn)$EF2(DF,Float) b:Float := getButtonValue("d01akf","functionEvaluations")$AttributeButtons fEvals:INT := wholePart exp(1.1513*(1.0/(2.0*(1.0-b)))) iw:INT := 75*fEvals f : Union(fn:FileName,fp:Asp1(F)) := [retract(ArgsFn)$Asp1(F)] d01akf(getlo(args.range),gethi(args.range),args.abserr,args.relerr,4*iw,iw,-1,f) @ \section{domain D01AMFA d01amfAnnaType} <<domain D01AMFA d01amfAnnaType>>= )abbrev domain D01AMFA d01amfAnnaType ++ Author: Brian Dupee ++ Date Created: March 1994 ++ Date Last Updated: December 1997 ++ Basic Operations: measure, numericalIntegration ++ Related Constructors: Result, RoutinesTable ++ Description: ++ \axiomType{d01amfAnnaType} is a domain of \axiomType{NumericalIntegrationCategory} ++ for the NAG routine D01AMF, a general numerical integration routine which ++ can handle infinite or semi-infinite range of the input function. The ++ function \axiomFun{measure} measures the usefulness of the routine D01AMF ++ for the given problem. The function \axiomFun{numericalIntegration} ++ performs the integration by using \axiomType{NagIntegrationPackage}. d01amfAnnaType(): NumericalIntegrationCategory == Result add EF2 ==> ExpressionFunctions2 EDF ==> Expression DoubleFloat LDF ==> List DoubleFloat SDF ==> Stream DoubleFloat DF ==> DoubleFloat FI ==> Fraction Integer EFI ==> Expression Fraction Integer SOCDF ==> Segment OrderedCompletion DoubleFloat NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) MDNIA ==> Record(fn:EDF,range:List SOCDF,abserr:DF,relerr:DF) INT ==> Integer BOP ==> BasicOperator S ==> Symbol ST ==> String LST ==> List String RT ==> RoutinesTable Rep:=Result import Rep, d01AgentsPackage, NagIntegrationPackage measure(R:RT,args:NIA) == ext:Result := empty()$Result Range:=rangeIsFinite(args) pp:SDF := singularitiesOf(args) not (empty?(pp)$SDF) => [0.0,"d01amf: There is a possible problem at the following point(s): " commaSeparate(sdf2lst(pp)), ext] [getMeasure(R,d01amf@S)$RT, "d01amf is a reasonable choice if the " "integral is infinite or semi-infinite and d01transform cannot " "do better than using general routines",ext] numericalIntegration(args:NIA,hints:Result) == r:INT bound:DF ArgsFn := map(convert(#1)$DF,args.fn)$EF2(DF,Float) b:Float := getButtonValue("d01amf","functionEvaluations")$AttributeButtons fEvals:INT := wholePart exp(1.1513*(1.0/(2.0*(1.0-b)))) iw:INT := 150*fEvals f : Union(fn:FileName,fp:Asp1(F)) := [retract(ArgsFn)$Asp1(F)] Range:=rangeIsFinite(args) if (Range case upperInfinite) then bound := getlo(args.range) r := 1 else if (Range case lowerInfinite) then bound := gethi(args.range) r := -1 else bound := 0$DF r := 2 d01amf(bound,r,args.abserr,args.relerr,4*iw,iw,-1,f) @ \section{domain D01APFA d01apfAnnaType} <<domain D01APFA d01apfAnnaType>>= )abbrev domain D01APFA d01apfAnnaType ++ Author: Brian Dupee ++ Date Created: March 1994 ++ Date Last Updated: December 1997 ++ Basic Operations: measure, numericalIntegration ++ Related Constructors: Result, RoutinesTable ++ Description: ++ \axiomType{d01apfAnnaType} is a domain of \axiomType{NumericalIntegrationCategory} ++ for the NAG routine D01APF, a general numerical integration routine which ++ can handle end point singularities of the algebraico-logarithmic form ++ w(x) = (x-a)^c * (b-x)^d. The ++ function \axiomFun{measure} measures the usefulness of the routine D01APF ++ for the given problem. The function \axiomFun{numericalIntegration} ++ performs the integration by using \axiomType{NagIntegrationPackage}. d01apfAnnaType(): NumericalIntegrationCategory == Result add EF2 ==> ExpressionFunctions2 EDF ==> Expression DoubleFloat LDF ==> List DoubleFloat SDF ==> Stream DoubleFloat DF ==> DoubleFloat FI ==> Fraction Integer EFI ==> Expression Fraction Integer SOCDF ==> Segment OrderedCompletion DoubleFloat NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) MDNIA ==> Record(fn:EDF,range:List SOCDF,abserr:DF,relerr:DF) INT ==> Integer BOP ==> BasicOperator S ==> Symbol ST ==> String LST ==> List String RT ==> RoutinesTable Rep:=Result import Rep, NagIntegrationPackage, d01AgentsPackage, d01WeightsPackage measure(R:RT,args:NIA) == ext:Result := empty()$Result d := (c := 0$DF) if ((a := exprHasAlgebraicWeight(args)) case LDF) then if (a.1 > -1) then c := a.1 if (a.2 > -1) then d := a.2 l:INT := exprHasLogarithmicWeights(args) -- (zero? c) and (zero? d) and (one? l) => (zero? c) and (zero? d) and (l = 1) => [0.0,"d01apf: A suitable singularity has not been found", ext] out:LDF := [c,d,l :: DF] outany:Any := coerce(out)$AnyFunctions1(LDF) ex:Record(key:S,entry:Any) := [d01apfextra@S,outany] ext := insert!(ex,ext)$Result st:ST := "Recommended is d01apf with c = " df2st(c) ", d = " df2st(d) " and l = " string(l)$ST [getMeasure(R,d01apf@S)$RT, st, ext] numericalIntegration(args:NIA,hints:Result) == Var:EDF := coerce(args.var)$EDF la:Any := coerce(search((d01apfextra@S),hints)$Result)@Any list:LDF := retract(la)$AnyFunctions1(LDF) Fac1:EDF := (Var - (getlo(args.range) :: EDF))$EDF Fac2:EDF := ((gethi(args.range) :: EDF) - Var)$EDF c := first(list)$LDF d := second(list)$LDF l := (retract(third(list)$LDF)@INT)$DF thebiz:EDF := (Fac1**(c :: EDF))*(Fac2**(d :: EDF)) if l > 1 then if l = 2 then thebiz := thebiz*log(Fac1) else if l = 3 then thebiz := thebiz*log(Fac2) else thebiz := thebiz*log(Fac1)*log(Fac2) Fn := (args.fn/thebiz)$EDF ArgsFn := map(convert(#1)$DF,Fn)$EF2(DF,Float) b:Float := getButtonValue("d01apf","functionEvaluations")$AttributeButtons fEvals:INT := wholePart exp(1.1513*(1.0/(2.0*(1.0-b)))) iw:INT := 75*fEvals f : Union(fn:FileName,fp:Asp1(G)) := [retract(ArgsFn)$Asp1(G)] d01apf(getlo(args.range),gethi(args.range),c,d,l,args.abserr,args.relerr,4*iw,iw,-1,f) @ \section{domain D01AQFA d01aqfAnnaType} <<domain D01AQFA d01aqfAnnaType>>= )abbrev domain D01AQFA d01aqfAnnaType ++ Author: Brian Dupee ++ Date Created: March 1994 ++ Date Last Updated: December 1997 ++ Basic Operations: measure, numericalIntegration ++ Related Constructors: Result, RoutinesTable ++ Description: ++ \axiomType{d01aqfAnnaType} is a domain of \axiomType{NumericalIntegrationCategory} ++ for the NAG routine D01AQF, a general numerical integration routine which ++ can solve an integral of the form \newline ++ \centerline{\inputbitmap{/home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.xbm}} ++ The function \axiomFun{measure} measures the usefulness of the routine ++ D01AQF for the given problem. The function \axiomFun{numericalIntegration} ++ performs the integration by using \axiomType{NagIntegrationPackage}. d01aqfAnnaType(): NumericalIntegrationCategory == Result add EF2 ==> ExpressionFunctions2 EDF ==> Expression DoubleFloat LDF ==> List DoubleFloat SDF ==> Stream DoubleFloat DF ==> DoubleFloat FI ==> Fraction Integer EFI ==> Expression Fraction Integer SOCDF ==> Segment OrderedCompletion DoubleFloat NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) MDNIA ==> Record(fn:EDF,range:List SOCDF,abserr:DF,relerr:DF) INT ==> Integer BOP ==> BasicOperator S ==> Symbol ST ==> String LST ==> List String RT ==> RoutinesTable Rep:=Result import Rep, d01AgentsPackage, NagIntegrationPackage measure(R:RT,args:NIA) == ext:Result := empty()$Result Den := denominator(args.fn) -- one? Den => (Den = 1) => [0.0,"d01aqf: A suitable weight function has not been found", ext] listOfZeros:LDF := problemPoints(args.fn,args.var,args.range) numberOfZeros := (#(listOfZeros))$LDF zero?(numberOfZeros) => [0.0,"d01aqf: A suitable weight function has not been found", ext] numberOfZeros = 1 => s:SDF := singularitiesOf(args) more?(s,1)$SDF => [0.0,"d01aqf: Too many singularities have been found", ext] cFloat:Float := (convert(first(listOfZeros)$LDF)@Float)$DF cString:ST := (convert(cFloat)@ST)$Float lany:Any := coerce(listOfZeros)$AnyFunctions1(LDF) ex:Record(key:S,entry:Any) := [d01aqfextra@S,lany] ext := insert!(ex,ext)$Result [getMeasure(R,d01aqf@S)$RT, "Recommended is d01aqf with the " "hilbertian weight function of 1/(x-c) where c = " cString, ext] [0.0,"d01aqf: More than one factor has been found and so does not " "have a suitable weight function",ext] numericalIntegration(args:NIA,hints:Result) == Args := copy args ca:Any := coerce(search((d01aqfextra@S),hints)$Result)@Any c:DF := first(retract(ca)$AnyFunctions1(LDF))$LDF ci:FI := df2fi(c)$ExpertSystemToolsPackage Var:EFI := Args.var :: EFI Gx:EFI := (Var-(ci::EFI))*(edf2efi(Args.fn)$ExpertSystemToolsPackage) ArgsFn := map(convert(#1)$FI,Gx)$EF2(FI,Float) b:Float := getButtonValue("d01aqf","functionEvaluations")$AttributeButtons fEvals:INT := wholePart exp(1.1513*(1.0/(2.0*(1.0-b)))) iw:INT := 75*fEvals f : Union(fn:FileName,fp:Asp1(G)) := [retract(ArgsFn)$Asp1(G)] d01aqf(getlo(Args.range),gethi(Args.range),c,Args.abserr,Args.relerr,4*iw,iw,-1,f) @ \section{domain D01ALFA d01alfAnnaType} <<domain D01ALFA d01alfAnnaType>>= )abbrev domain D01ALFA d01alfAnnaType ++ Author: Brian Dupee ++ Date Created: March 1994 ++ Date Last Updated: December 1997 ++ Basic Operations: measure, numericalIntegration ++ Related Constructors: Result, RoutinesTable ++ Description: ++ \axiomType{d01alfAnnaType} is a domain of \axiomType{NumericalIntegrationCategory} ++ for the NAG routine D01ALF, a general numerical integration routine which ++ can handle a list of singularities. The ++ function \axiomFun{measure} measures the usefulness of the routine D01ALF ++ for the given problem. The function \axiomFun{numericalIntegration} ++ performs the integration by using \axiomType{NagIntegrationPackage}. d01alfAnnaType(): NumericalIntegrationCategory == Result add EF2 ==> ExpressionFunctions2 EDF ==> Expression DoubleFloat LDF ==> List DoubleFloat SDF ==> Stream DoubleFloat DF ==> DoubleFloat FI ==> Fraction Integer EFI ==> Expression Fraction Integer SOCDF ==> Segment OrderedCompletion DoubleFloat NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) MDNIA ==> Record(fn:EDF,range:List SOCDF,abserr:DF,relerr:DF) INT ==> Integer BOP ==> BasicOperator S ==> Symbol ST ==> String LST ==> List String RT ==> RoutinesTable Rep:=Result import Rep, d01AgentsPackage, NagIntegrationPackage measure(R:RT,args:NIA) == ext:Result := empty()$Result streamOfZeros:SDF := singularitiesOf(args) listOfZeros:LST := removeDuplicates!(sdf2lst(streamOfZeros)) numberOfZeros:INT := # listOfZeros (numberOfZeros > 15)@Boolean => [0.0,"d01alf: The list of singularities is too long", ext] positive?(numberOfZeros) => l:LDF := entries(complete(streamOfZeros)$SDF)$SDF lany:Any := coerce(l)$AnyFunctions1(LDF) ex:Record(key:S,entry:Any) := [d01alfextra@S,lany] ext := insert!(ex,ext)$Result st:ST := "Recommended is d01alf with the singularities " commaSeparate(listOfZeros) m := -- one?(numberOfZeros) => 0.4 (numberOfZeros = 1) => 0.4 getMeasure(R,d01alf@S)$RT [m, st, ext] [0.0, "d01alf: A list of suitable singularities has not been found", ext] numericalIntegration(args:NIA,hints:Result) == la:Any := coerce(search((d01alfextra@S),hints)$Result)@Any listOfZeros:LDF := retract(la)$AnyFunctions1(LDF) l:= removeDuplicates(listOfZeros)$LDF n:Integer := (#(l))$List(DF) M:Matrix DF := matrix([l])$(Matrix DF) b:Float := getButtonValue("d01alf","functionEvaluations")$AttributeButtons fEvals:INT := wholePart exp(1.1513*(1.0/(2.0*(1.0-b)))) iw:INT := 75*fEvals ArgsFn := map(convert(#1)$DF,args.fn)$EF2(DF,Float) f : Union(fn:FileName,fp:Asp1(F)) := [retract(ArgsFn)$Asp1(F)] d01alf(getlo(args.range),gethi(args.range),n,M,args.abserr,args.relerr,2*n*iw,n*iw,-1,f) @ \section{domain D01ANFA d01anfAnnaType} <<domain D01ANFA d01anfAnnaType>>= )abbrev domain D01ANFA d01anfAnnaType ++ Author: Brian Dupee ++ Date Created: March 1994 ++ Date Last Updated: December 1997 ++ Basic Operations: measure, numericalIntegration ++ Related Constructors: Result, RoutinesTable ++ Description: ++ \axiomType{d01anfAnnaType} is a domain of \axiomType{NumericalIntegrationCategory} ++ for the NAG routine D01ANF, a numerical integration routine which can ++ handle weight functions of the form cos(\omega x) or sin(\omega x). The ++ function \axiomFun{measure} measures the usefulness of the routine D01ANF ++ for the given problem. The function \axiomFun{numericalIntegration} ++ performs the integration by using \axiomType{NagIntegrationPackage}. d01anfAnnaType(): NumericalIntegrationCategory == Result add EF2 ==> ExpressionFunctions2 EDF ==> Expression DoubleFloat LDF ==> List DoubleFloat SDF ==> Stream DoubleFloat DF ==> DoubleFloat FI ==> Fraction Integer EFI ==> Expression Fraction Integer SOCDF ==> Segment OrderedCompletion DoubleFloat NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) MDNIA ==> Record(fn:EDF,range:List SOCDF,abserr:DF,relerr:DF) INT ==> Integer BOP ==> BasicOperator S ==> Symbol ST ==> String LST ==> List String RT ==> RoutinesTable Rep:=Result import Rep, d01WeightsPackage, d01AgentsPackage, NagIntegrationPackage measure(R:RT,args:NIA) == ext:Result := empty()$Result weight:Union(Record(op:BOP,w:DF),"failed") := exprHasWeightCosWXorSinWX(args) weight case "failed" => [0.0,"d01anf: A suitable weight has not been found", ext] weight case Record(op:BOP,w:DF) => wany := coerce(weight)$AnyFunctions1(Record(op:BOP,w:DF)) ex:Record(key:S,entry:Any) := [d01anfextra@S,wany] ext := insert!(ex,ext)$Result ws:ST := string(name(weight.op)$BOP)$S "(" df2st(weight.w) string(args.var)$S ")" [getMeasure(R,d01anf@S)$RT, "d01anf: The expression has a suitable weight:- " ws, ext] numericalIntegration(args:NIA,hints:Result) == a:INT r:Any := coerce(search((d01anfextra@S),hints)$Result)@Any rec:Record(op:BOP,w:DF) := retract(r)$AnyFunctions1(Record(op:BOP,w:DF)) Var := args.var :: EDF o:BOP := rec.op den:EDF := o((rec.w*Var)$EDF) Argsfn:EDF := args.fn/den if (name(o) = cos@S)@Boolean then a := 1 else a := 2 b:Float := getButtonValue("d01anf","functionEvaluations")$AttributeButtons fEvals:INT := wholePart exp(1.1513*(1.0/(2.0*(1.0-b)))) iw:INT := 75*fEvals ArgsFn := map(convert(#1)$DF,Argsfn)$EF2(DF,Float) f : Union(fn:FileName,fp:Asp1(G)) := [retract(ArgsFn)$Asp1(G)] d01anf(getlo(args.range),gethi(args.range),rec.w,a,args.abserr,args.relerr,4*iw,iw,-1,f) @ \section{domain D01ASFA d01asfAnnaType} <<domain D01ASFA d01asfAnnaType>>= )abbrev domain D01ASFA d01asfAnnaType ++ Author: Brian Dupee ++ Date Created: March 1994 ++ Date Last Updated: December 1997 ++ Basic Operations: measure, numericalIntegration ++ Related Constructors: Result, RoutinesTable ++ Description: ++ \axiomType{d01asfAnnaType} is a domain of \axiomType{NumericalIntegrationCategory} ++ for the NAG routine D01ASF, a numerical integration routine which can ++ handle weight functions of the form cos(\omega x) or sin(\omega x) on an ++ semi-infinite range. The ++ function \axiomFun{measure} measures the usefulness of the routine D01ASF ++ for the given problem. The function \axiomFun{numericalIntegration} ++ performs the integration by using \axiomType{NagIntegrationPackage}. d01asfAnnaType(): NumericalIntegrationCategory == Result add EF2 ==> ExpressionFunctions2 EDF ==> Expression DoubleFloat LDF ==> List DoubleFloat SDF ==> Stream DoubleFloat DF ==> DoubleFloat FI ==> Fraction Integer EFI ==> Expression Fraction Integer SOCDF ==> Segment OrderedCompletion DoubleFloat NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) MDNIA ==> Record(fn:EDF,range:List SOCDF,abserr:DF,relerr:DF) INT ==> Integer BOP ==> BasicOperator S ==> Symbol ST ==> String LST ==> List String RT ==> RoutinesTable Rep:=Result import Rep, d01WeightsPackage, d01AgentsPackage, NagIntegrationPackage measure(R:RT,args:NIA) == ext:Result := empty()$Result Range := rangeIsFinite(args) not(Range case upperInfinite) => [0.0,"d01asf is not a suitable routine for infinite integrals",ext] weight: Union(Record(op:BOP,w:DF),"failed") := exprHasWeightCosWXorSinWX(args) weight case "failed" => [0.0,"d01asf: A suitable weight has not been found", ext] weight case Record(op:BOP,w:DF) => wany := coerce(weight)$AnyFunctions1(Record(op:BOP,w:DF)) ex:Record(key:S,entry:Any) := [d01asfextra@S,wany] ext := insert!(ex,ext)$Result ws:ST := string(name(weight.op)$BOP)$S "(" df2st(weight.w) string(args.var)$S ")" [getMeasure(R,d01asf@S)$RT, "d01asf: A suitable weight has been found:- " ws, ext] numericalIntegration(args:NIA,hints:Result) == i:INT r:Any := coerce(search((d01asfextra@S),hints)$Result)@Any rec:Record(op:BOP,w:DF) := retract(r)$AnyFunctions1(Record(op:BOP,w:DF)) Var := args.var :: EDF o:BOP := rec.op den:EDF := o((rec.w*Var)$EDF) Argsfn:EDF := args.fn/den if (name(o) = cos@S)@Boolean then i := 1 else i := 2 b:Float := getButtonValue("d01asf","functionEvaluations")$AttributeButtons fEvals:INT := wholePart exp(1.1513*(1.0/(2.0*(1.0-b)))) iw:INT := 75*fEvals ArgsFn := map(convert(#1)$DF,Argsfn)$EF2(DF,Float) f : Union(fn:FileName,fp:Asp1(G)) := [retract(ArgsFn)$Asp1(G)] err := positive?(args.abserr) => args.abserr args.relerr d01asf(getlo(args.range),rec.w,i,err,50,4*iw,2*iw,-1,f) @ \section{domain D01GBFA d01gbfAnnaType} <<domain D01GBFA d01gbfAnnaType>>= )abbrev domain D01GBFA d01gbfAnnaType ++ Author: Brian Dupee ++ Date Created: March 1994 ++ Date Last Updated: December 1997 ++ Basic Operations: measure, numericalIntegration ++ Related Constructors: Result, RoutinesTable ++ Description: ++ \axiomType{d01gbfAnnaType} is a domain of \axiomType{NumericalIntegrationCategory} ++ for the NAG routine D01GBF, a numerical integration routine which can ++ handle multi-dimensional quadrature over a finite region. The ++ function \axiomFun{measure} measures the usefulness of the routine D01GBF ++ for the given problem. The function \axiomFun{numericalIntegration} ++ performs the integration by using \axiomType{NagIntegrationPackage}. d01gbfAnnaType(): NumericalIntegrationCategory == Result add EF2 ==> ExpressionFunctions2 EDF ==> Expression DoubleFloat LDF ==> List DoubleFloat SDF ==> Stream DoubleFloat DF ==> DoubleFloat FI ==> Fraction Integer EFI ==> Expression Fraction Integer SOCDF ==> Segment OrderedCompletion DoubleFloat NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) MDNIA ==> Record(fn:EDF,range:List SOCDF,abserr:DF,relerr:DF) INT ==> Integer BOP ==> BasicOperator S ==> Symbol ST ==> String LST ==> List String RT ==> RoutinesTable Rep:=Result import Rep, d01AgentsPackage, NagIntegrationPackage measure(R:RT,args:MDNIA) == ext:Result := empty()$Result (rel := args.relerr) < 0.01 :: DF => [0.1, "d01gbf: The relative error requirement is too small",ext] segs := args.range vars := variables(args.fn)$EDF for i in 1..# vars repeat nia:NIA := [vars.i,args.fn,segs.i,args.abserr,rel] not rangeIsFinite(nia) case finite => return [0.0,"d01gbf is not a suitable routine for infinite integrals",ext] [getMeasure(R,d01gbf@S)$RT, "Recommended is d01gbf", ext] numericalIntegration(args:MDNIA,hints:Result) == import Integer segs := args.range dim:INT := # segs low:Matrix DF := matrix([[getlo(segs.i) for i in 1..dim]])$(Matrix DF) high:Matrix DF := matrix([[gethi(segs.i) for i in 1..dim]])$(Matrix DF) b:Float := getButtonValue("d01gbf","functionEvaluations")$AttributeButtons a:Float:= exp(1.1513*(1.0/(2.0*(1.0-b)))) maxcls:INT := 1500*(dim+1)*(fEvals:INT := wholePart(a)) mincls:INT := 300*fEvals c:Float := nthRoot((maxcls::Float)/4.0,dim)$Float lenwrk:INT := 3*dim*(d:INT := wholePart(c))+10*dim wrkstr:Matrix DF := matrix([[0$DF for i in 1..lenwrk]])$(Matrix DF) ArgsFn := map(convert(#1)$DF,args.fn)$EF2(DF,Float) f : Union(fn:FileName,fp:Asp4(FUNCTN)) := [retract(ArgsFn)$Asp4(FUNCTN)] out:Result := d01gbf(dim,low,high,maxcls,args.relerr,lenwrk,mincls,wrkstr,-1,f) changeName(finest@Symbol,result@Symbol,out) @ \section{domain D01FCFA d01fcfAnnaType} <<domain D01FCFA d01fcfAnnaType>>= )abbrev domain D01FCFA d01fcfAnnaType ++ Author: Brian Dupee ++ Date Created: March 1994 ++ Date Last Updated: December 1997 ++ Basic Operations: measure, numericalIntegration ++ Related Constructors: Result, RoutinesTable ++ Description: ++ \axiomType{d01fcfAnnaType} is a domain of \axiomType{NumericalIntegrationCategory} ++ for the NAG routine D01FCF, a numerical integration routine which can ++ handle multi-dimensional quadrature over a finite region. The ++ function \axiomFun{measure} measures the usefulness of the routine D01GBF ++ for the given problem. The function \axiomFun{numericalIntegration} ++ performs the integration by using \axiomType{NagIntegrationPackage}. d01fcfAnnaType(): NumericalIntegrationCategory == Result add EF2 ==> ExpressionFunctions2 EDF ==> Expression DoubleFloat LDF ==> List DoubleFloat SDF ==> Stream DoubleFloat DF ==> DoubleFloat FI ==> Fraction Integer EFI ==> Expression Fraction Integer SOCDF ==> Segment OrderedCompletion DoubleFloat NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) MDNIA ==> Record(fn:EDF,range:List SOCDF,abserr:DF,relerr:DF) INT ==> Integer BOP ==> BasicOperator S ==> Symbol ST ==> String LST ==> List String RT ==> RoutinesTable Rep:=Result import Rep, d01AgentsPackage, NagIntegrationPackage measure(R:RT,args:MDNIA) == ext:Result := empty()$Result segs := args.range vars := variables(args.fn)$EDF for i in 1..# vars repeat nia:NIA := [vars.i,args.fn,segs.i,args.abserr,args.relerr] not rangeIsFinite(nia) case finite => return [0.0,"d01fcf is not a suitable routine for infinite integrals",ext] [getMeasure(R,d01fcf@S)$RT, "Recommended is d01fcf", ext] numericalIntegration(args:MDNIA,hints:Result) == import Integer segs := args.range dim := # segs err := args.relerr low:Matrix DF := matrix([[getlo(segs.i) for i in 1..dim]])$(Matrix DF) high:Matrix DF := matrix([[gethi(segs.i) for i in 1..dim]])$(Matrix DF) b:Float := getButtonValue("d01fcf","functionEvaluations")$AttributeButtons a:Float:= exp(1.1513*(1.0/(2.0*(1.0-b)))) alpha:INT := 2**dim+2*dim**2+2*dim+1 d:Float := max(1.e-3,nthRoot(convert(err)@Float,4))$Float minpts:INT := (fEvals := wholePart(a))*wholePart(alpha::Float/d) maxpts:INT := 5*minpts lenwrk:INT := (dim+2)*(1+(33*fEvals)) ArgsFn := map(convert(#1)$DF,args.fn)$EF2(DF,Float) f : Union(fn:FileName,fp:Asp4(FUNCTN)) := [retract(ArgsFn)$Asp4(FUNCTN)] out:Result := d01fcf(dim,low,high,maxpts,err,lenwrk,minpts,-1,f) changeName(finval@Symbol,result@Symbol,out) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain D01AJFA d01ajfAnnaType>> <<domain D01AKFA d01akfAnnaType>> <<domain D01AMFA d01amfAnnaType>> <<domain D01AQFA d01aqfAnnaType>> <<domain D01APFA d01apfAnnaType>> <<domain D01ALFA d01alfAnnaType>> <<domain D01ANFA d01anfAnnaType>> <<domain D01ASFA d01asfAnnaType>> <<domain D01GBFA d01gbfAnnaType>> <<domain D01FCFA d01fcfAnnaType>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}