\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra d01agents.spad} \author{Brian Dupee} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain INTFTBL IntegrationFunctionsTable} <<domain INTFTBL IntegrationFunctionsTable>>= )abbrev domain INTFTBL IntegrationFunctionsTable ++ Author: Brian Dupee ++ Date Created: March 1995 ++ Date Last Updated: June 1995 ++ Description: ++ IntegrationFunctionsTable(): E == I where EF2 ==> ExpressionFunctions2 EFI ==> Expression Fraction Integer FI ==> Fraction Integer LEDF ==> List Expression DoubleFloat KEDF ==> Kernel Expression DoubleFloat EEDF ==> Equation Expression DoubleFloat EDF ==> Expression DoubleFloat PDF ==> Polynomial DoubleFloat LDF ==> List DoubleFloat SDF ==> Stream DoubleFloat DF ==> DoubleFloat F ==> Float ST ==> String LST ==> List String SI ==> SingleInteger SOCDF ==> Segment OrderedCompletion DoubleFloat OCDF ==> OrderedCompletion DoubleFloat OCEDF ==> OrderedCompletion Expression DoubleFloat EOCEFI ==> Equation OrderedCompletion Expression Fraction Integer OCEFI ==> OrderedCompletion Expression Fraction Integer OCFI ==> OrderedCompletion Fraction Integer NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) INT ==> Integer CTYPE ==> Union(continuous: "Continuous at the end points", lowerSingular: "There is a singularity at the lower end point", upperSingular: "There is a singularity at the upper end point", bothSingular: "There are singularities at both end points", notEvaluated: "End point continuity not yet evaluated") RTYPE ==> Union(finite: "The range is finite", lowerInfinite: "The bottom of range is infinite", upperInfinite: "The top of range is infinite", bothInfinite: "Both top and bottom points are infinite", notEvaluated: "Range not yet evaluated") STYPE ==> Union(str:SDF, notEvaluated:"Internal singularities not yet evaluated") ATT ==> Record(endPointContinuity:CTYPE, singularitiesStream:STYPE,range:RTYPE) ROA ==> Record(key:NIA,entry:ATT) E ==> with showTheFTable:() -> $ ++ showTheFTable() returns the current table of functions. clearTheFTable : () -> Void ++ clearTheFTable() clears the current table of functions. keys : $ -> List(NIA) ++ keys(f) returns the list of keys of f fTable: List Record(key:NIA,entry:ATT) -> $ ++ fTable(l) creates a functions table from the elements of l. insert!:Record(key:NIA,entry:ATT) -> $ ++ insert!(r) inserts an entry r into theIFTable showAttributes:NIA -> Union(ATT,"failed") ++ showAttributes(x) \undocumented{} entries : $ -> List Record(key:NIA,entry:ATT) ++ entries(x) \undocumented{} entry:NIA -> ATT ++ entry(n) \undocumented{} I ==> add Rep := Table(NIA,ATT) import Rep theFTable:$ := empty()$Rep showTheFTable():$ == theFTable clearTheFTable():Void == theFTable := empty()$Rep void()$Void fTable(l:List Record(key:NIA,entry:ATT)):$ == theFTable := table(l)$Rep insert!(r:Record(key:NIA,entry:ATT)):$ == insert!(r,theFTable)$Rep keys(t:$):List NIA == keys(t)$Rep showAttributes(k:NIA):Union(ATT,"failed") == search(k,theFTable)$Rep entries(t:$):List Record(key:NIA,entry:ATT) == members(t)$Rep entry(k:NIA):ATT == qelt(theFTable,k)$Rep @ \section{package D01AGNT d01AgentsPackage} <<package D01AGNT d01AgentsPackage>>= )abbrev package D01AGNT d01AgentsPackage ++ Author: Brian Dupee ++ Date Created: March 1994 ++ Date Last Updated: December 1997 ++ Basic Operations: rangeIsFinite, functionIsContinuousAtEndPoints, ++ functionIsOscillatory ++ Description: ++ \axiomType{d01AgentsPackage} is a package of numerical agents to be used ++ to investigate attributes of an input function so as to decide the ++ \axiomFun{measure} of an appropriate numerical integration routine. ++ It contains functions \axiomFun{rangeIsFinite} to test the input range and ++ \axiomFun{functionIsContinuousAtEndPoints} to check for continuity at ++ the end points of the range. d01AgentsPackage(): E == I where EF2 ==> ExpressionFunctions2 EFI ==> Expression Fraction Integer FI ==> Fraction Integer LEDF ==> List Expression DoubleFloat KEDF ==> Kernel Expression DoubleFloat EEDF ==> Equation Expression DoubleFloat EDF ==> Expression DoubleFloat PDF ==> Polynomial DoubleFloat LDF ==> List DoubleFloat SDF ==> Stream DoubleFloat DF ==> DoubleFloat F ==> Float ST ==> String LST ==> List String SI ==> SingleInteger SOCDF ==> Segment OrderedCompletion DoubleFloat OCDF ==> OrderedCompletion DoubleFloat OCEDF ==> OrderedCompletion Expression DoubleFloat EOCEFI ==> Equation OrderedCompletion Expression Fraction Integer OCEFI ==> OrderedCompletion Expression Fraction Integer OCFI ==> OrderedCompletion Fraction Integer NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) INT ==> Integer CTYPE ==> Union(continuous: "Continuous at the end points", lowerSingular: "There is a singularity at the lower end point", upperSingular: "There is a singularity at the upper end point", bothSingular: "There are singularities at both end points", notEvaluated: "End point continuity not yet evaluated") RTYPE ==> Union(finite: "The range is finite", lowerInfinite: "The bottom of range is infinite", upperInfinite: "The top of range is infinite", bothInfinite: "Both top and bottom points are infinite", notEvaluated: "Range not yet evaluated") STYPE ==> Union(str:SDF, notEvaluated:"Internal singularities not yet evaluated") ATT ==> Record(endPointContinuity:CTYPE, singularitiesStream:STYPE,range:RTYPE) ROA ==> Record(key:NIA,entry:ATT) E ==> with rangeIsFinite : NIA -> RTYPE ++ rangeIsFinite(args) tests the endpoints of \spad{args.range} for ++ infinite end points. functionIsContinuousAtEndPoints: NIA -> CTYPE ++ functionIsContinuousAtEndPoints(args) uses power series limits ++ to check for problems at the end points of the range of \spad{args}. getlo : SOCDF -> DF ++ getlo(x) gets the \axiomType{DoubleFloat} equivalent of ++ the first endpoint of the range \axiom{x} gethi : SOCDF -> DF ++ gethi(x) gets the \axiomType{DoubleFloat} equivalent of ++ the second endpoint of the range \axiom{x} functionIsOscillatory:NIA -> F ++ functionIsOscillatory(a) tests whether the function \spad{a.fn} ++ has many zeros of its derivative. problemPoints: (EDF, Symbol, SOCDF) -> List DF ++ problemPoints(f,var,range) returns a list of possible problem points ++ by looking at the zeros of the denominator of the function if it ++ can be retracted to \axiomType{Polynomial DoubleFloat}. singularitiesOf:NIA -> SDF ++ singularitiesOf(args) returns a list of potential ++ singularities of the function within the given range df2st:DF -> String ++ df2st(n) coerces a \axiomType{DoubleFloat} to \axiomType{String} ldf2lst:LDF -> LST ++ ldf2lst(ln) coerces a List of \axiomType{DoubleFloat} to \axiomType{List String} sdf2lst:SDF -> LST ++ sdf2lst(ln) coerces a Stream of \axiomType{DoubleFloat} to \axiomType{List String} commaSeparate:LST -> ST ++ commaSeparate(l) produces a comma separated string from a ++ list of strings. changeName:(Symbol,Symbol,Result) -> Result ++ changeName(s,t,r) changes the name of item \axiom{s} in \axiom{r} ++ to \axiom{t}. I ==> ExpertSystemContinuityPackage add import ExpertSystemToolsPackage import ExpertSystemContinuityPackage -- local functions ocdf2ocefi : OCDF -> OCEFI rangeOfArgument : (KEDF, NIA) -> DF continuousAtPoint? : (EFI,EOCEFI) -> Boolean rand:(SOCDF,INT) -> LDF eval:(EDF,Symbol,LDF) -> LDF numberOfSignChanges:LDF -> INT rangeIsFiniteFunction:NIA -> RTYPE functionIsContinuousAtEndPointsFunction:NIA -> CTYPE changeName(s:Symbol,t:Symbol,r:Result):Result == a := remove!(s,r)$Result a case Any => insert!([t,a],r)$Result r r commaSeparate(l:LST):ST == empty?(l)$LST => "" -- one?(#(l)) => concat(l)$ST (#(l) = 1) => concat(l)$ST f := first(l)$LST t := [concat([", ",l.i])$ST for i in 2..#(l)] concat(f,concat(t)$ST)$ST rand(seg:SOCDF,n:INT):LDF == -- produced a sorted list of random numbers in the given range l:DF := getlo seg s:DF := (gethi seg) - l seed:INT := random()$INT dseed:DF := seed :: DF r:LDF := [(((random(seed)$INT) :: DF)*s/dseed + l) for i in 1..n] sort(r)$LDF eval(f:EDF,var:Symbol,l:LDF):LDF == empty?(l)$LDF => [0$DF] ve := var::EDF [retract(eval(f,equation(ve,u::EDF)$EEDF)$EDF)@DF for u in l] numberOfSignChanges(l:LDF):INT == -- calculates the number of sign changes in a list a := 0$INT empty?(l)$LDF => 0 for i in 2..# l repeat if negative?(l.i*l.(i-1)) then a := a + 1 a rangeOfArgument(k: KEDF, args:NIA): DF == Args := copy args Args.fn := arg := first(argument(k)$KEDF)$LEDF functionIsContinuousAtEndPoints(Args) case continuous => r:SOCDF := args.range low:EDF := (getlo r) :: EDF high:EDF := (gethi r) :: EDF eql := equation(a := args.var :: EDF, low)$EEDF eqh := equation(a, high)$EEDF e1 := (numeric(eval(arg,eql)$EDF)$Numeric(DF)) :: DF e2 := (numeric(eval(arg,eqh)$EDF)$Numeric(DF)) :: DF e2-e1 0$DF ocdf2ocefi(r:OCDF):OCEFI == finite?(r)$OCDF => (edf2efi(((retract(r)@DF)$OCDF)::EDF))::OCEFI r pretend OCEFI continuousAtPoint?(f:EFI,e:EOCEFI):Boolean == (l := limit(f,e)$PowerSeriesLimitPackage(FI,EFI)) case OCEFI => finite?(l :: OCEFI) -- if the left hand limit equals the right hand limit, or if neither -- side has a limit at this point, the return type of limit() is -- Union(Ordered Completion Expression Fraction Integer,"failed") false -- exported functions rangeIsFiniteFunction(args:NIA): RTYPE == -- rangeIsFinite(x) tests the endpoints of x.range for infinite -- end points. -- [-inf, inf] => 4 -- [ x , inf] => 3 -- [-inf, x ] => 1 -- [ x , y ] => 0 fr:SI := (3::SI * whatInfinity(hi(args.range))$OCDF - whatInfinity(lo(args.range))$OCDF) fr = 0 => ["The range is finite"] fr = 1 => ["The bottom of range is infinite"] fr = 3 => ["The top of range is infinite"] fr = 4 => ["Both top and bottom points are infinite"] error("rangeIsFinite",["this is not a valid range"])$ErrorFunctions rangeIsFinite(args:NIA): RTYPE == nia := copy args (t := showAttributes(nia)$IntegrationFunctionsTable) case ATT => s := coerce(t)@ATT s.range case notEvaluated => s.range := rangeIsFiniteFunction(nia) r:ROA := [nia,s] insert!(r)$IntegrationFunctionsTable s.range s.range a:ATT := [["End point continuity not yet evaluated"], ["Internal singularities not yet evaluated"], e:=rangeIsFiniteFunction(nia)] r:ROA := [nia,a] insert!(r)$IntegrationFunctionsTable e functionIsContinuousAtEndPointsFunction(args:NIA):CTYPE == v := args.var :: EFI :: OCEFI high:OCEFI := ocdf2ocefi(hi(args.range)) low:OCEFI := ocdf2ocefi(lo(args.range)) f := edf2efi(args.fn) l:Boolean := continuousAtPoint?(f,equation(v,low)$EOCEFI) h:Boolean := continuousAtPoint?(f,equation(v,high)$EOCEFI) l and h => ["Continuous at the end points"] l => ["There is a singularity at the upper end point"] h => ["There is a singularity at the lower end point"] ["There are singularities at both end points"] functionIsContinuousAtEndPoints(args:NIA): CTYPE == nia := copy args (t := showAttributes(nia)$IntegrationFunctionsTable) case ATT => s := coerce(t)@ATT s.endPointContinuity case notEvaluated => s.endPointContinuity := functionIsContinuousAtEndPointsFunction(nia) r:ROA := [nia,s] insert!(r)$IntegrationFunctionsTable s.endPointContinuity s.endPointContinuity a:ATT := [e:=functionIsContinuousAtEndPointsFunction(nia), ["Internal singularities not yet evaluated"], ["Range not yet evaluated"]] r:ROA := [nia,a] insert!(r)$IntegrationFunctionsTable e functionIsOscillatory(a:NIA):F == args := copy a k := tower(numerator args.fn)$EDF p:F := pi()$F for i in 1..# k repeat is?(ker := k.i, sin :: Symbol) => ra := convert(rangeOfArgument(ker,args))@F ra > 2*p => return (ra/p) is?(ker, cos :: Symbol) => ra := convert(rangeOfArgument(ker,args))@F ra > 2*p => return (ra/p) l:LDF := rand(args.range,30) l := eval(args.fn,args.var,l) numberOfSignChanges(l) :: F singularitiesOf(args:NIA):SDF == nia := copy args (t := showAttributes(nia)$IntegrationFunctionsTable) case ATT => s:ATT := coerce(t)@ATT p:STYPE := s.singularitiesStream p case str => p.str e:SDF := singularitiesOf(nia.fn,[nia.var],nia.range) if not empty?(e) then if less?(e,10)$SDF then extend(e,10)$SDF s.singularitiesStream := [e] r:ROA := [nia,s] insert!(r)$IntegrationFunctionsTable e e:=singularitiesOf(nia.fn,[nia.var],nia.range) if not empty?(e) then if less?(e,10)$SDF then extend(e,10)$SDF a:ATT := [["End point continuity not yet evaluated"],[e], ["Range not yet evaluated"]] r:ROA := [nia,a] insert!(r)$IntegrationFunctionsTable e @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain INTFTBL IntegrationFunctionsTable>> <<package D01AGNT d01AgentsPackage>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}