\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra coordsys.spad} \author{Jim Wen, Clifton J. Williamson} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package COORDSYS CoordinateSystems} <<package COORDSYS CoordinateSystems>>= )abbrev package COORDSYS CoordinateSystems ++ Author: Jim Wen ++ Date Created: 12 March 1990 ++ Date Last Updated: 19 June 1990, Clifton J. Williamson ++ Basic Operations: cartesian, polar, cylindrical, spherical, parabolic, elliptic, ++ parabolicCylindrical, paraboloidal, ellipticCylindrical, prolateSpheroidal, ++ oblateSpheroidal, bipolar, bipolarCylindrical, toroidal, conical ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: CoordinateSystems provides coordinate transformation functions ++ for plotting. Functions in this package return conversion functions ++ which take points expressed in other coordinate systems and return points ++ with the corresponding Cartesian coordinates. CoordinateSystems(R): Exports == Implementation where R : Join(Field,TranscendentalFunctionCategory,RadicalCategory) Pt ==> Point R Exports ==> with cartesian : Pt -> Pt ++ cartesian(pt) returns the Cartesian coordinates of point pt. polar: Pt -> Pt ++ polar(pt) transforms pt from polar coordinates to Cartesian ++ coordinates: the function produced will map the point \spad{(r,theta)} ++ to \spad{x = r * cos(theta)} , \spad{y = r * sin(theta)}. cylindrical: Pt -> Pt ++ cylindrical(pt) transforms pt from polar coordinates to Cartesian ++ coordinates: the function produced will map the point \spad{(r,theta,z)} ++ to \spad{x = r * cos(theta)}, \spad{y = r * sin(theta)}, \spad{z}. spherical: Pt -> Pt ++ spherical(pt) transforms pt from spherical coordinates to Cartesian ++ coordinates: the function produced will map the point \spad{(r,theta,phi)} ++ to \spad{x = r*sin(phi)*cos(theta)}, \spad{y = r*sin(phi)*sin(theta)}, ++ \spad{z = r*cos(phi)}. parabolic: Pt -> Pt ++ parabolic(pt) transforms pt from parabolic coordinates to Cartesian ++ coordinates: the function produced will map the point \spad{(u,v)} to ++ \spad{x = 1/2*(u**2 - v**2)}, \spad{y = u*v}. parabolicCylindrical: Pt -> Pt ++ parabolicCylindrical(pt) transforms pt from parabolic cylindrical ++ coordinates to Cartesian coordinates: the function produced will ++ map the point \spad{(u,v,z)} to \spad{x = 1/2*(u**2 - v**2)}, ++ \spad{y = u*v}, \spad{z}. paraboloidal: Pt -> Pt ++ paraboloidal(pt) transforms pt from paraboloidal coordinates to ++ Cartesian coordinates: the function produced will map the point ++ \spad{(u,v,phi)} to \spad{x = u*v*cos(phi)}, \spad{y = u*v*sin(phi)}, ++ \spad{z = 1/2 * (u**2 - v**2)}. elliptic: R -> (Pt -> Pt) ++ elliptic(a) transforms from elliptic coordinates to Cartesian ++ coordinates: \spad{elliptic(a)} is a function which will map the ++ point \spad{(u,v)} to \spad{x = a*cosh(u)*cos(v)}, \spad{y = a*sinh(u)*sin(v)}. ellipticCylindrical: R -> (Pt -> Pt) ++ ellipticCylindrical(a) transforms from elliptic cylindrical coordinates ++ to Cartesian coordinates: \spad{ellipticCylindrical(a)} is a function ++ which will map the point \spad{(u,v,z)} to \spad{x = a*cosh(u)*cos(v)}, ++ \spad{y = a*sinh(u)*sin(v)}, \spad{z}. prolateSpheroidal: R -> (Pt -> Pt) ++ prolateSpheroidal(a) transforms from prolate spheroidal coordinates to ++ Cartesian coordinates: \spad{prolateSpheroidal(a)} is a function ++ which will map the point \spad{(xi,eta,phi)} to ++ \spad{x = a*sinh(xi)*sin(eta)*cos(phi)}, \spad{y = a*sinh(xi)*sin(eta)*sin(phi)}, ++ \spad{z = a*cosh(xi)*cos(eta)}. oblateSpheroidal: R -> (Pt -> Pt) ++ oblateSpheroidal(a) transforms from oblate spheroidal coordinates to ++ Cartesian coordinates: \spad{oblateSpheroidal(a)} is a function which ++ will map the point \spad{(xi,eta,phi)} to \spad{x = a*sinh(xi)*sin(eta)*cos(phi)}, ++ \spad{y = a*sinh(xi)*sin(eta)*sin(phi)}, \spad{z = a*cosh(xi)*cos(eta)}. bipolar: R -> (Pt -> Pt) ++ bipolar(a) transforms from bipolar coordinates to Cartesian coordinates: ++ \spad{bipolar(a)} is a function which will map the point \spad{(u,v)} to ++ \spad{x = a*sinh(v)/(cosh(v)-cos(u))}, \spad{y = a*sin(u)/(cosh(v)-cos(u))}. bipolarCylindrical: R -> (Pt -> Pt) ++ bipolarCylindrical(a) transforms from bipolar cylindrical coordinates ++ to Cartesian coordinates: \spad{bipolarCylindrical(a)} is a function which ++ will map the point \spad{(u,v,z)} to \spad{x = a*sinh(v)/(cosh(v)-cos(u))}, ++ \spad{y = a*sin(u)/(cosh(v)-cos(u))}, \spad{z}. toroidal: R -> (Pt -> Pt) ++ toroidal(a) transforms from toroidal coordinates to Cartesian ++ coordinates: \spad{toroidal(a)} is a function which will map the point ++ \spad{(u,v,phi)} to \spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))}, ++ \spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))}, \spad{z = a*sin(u)/(cosh(v)-cos(u))}. conical: (R,R) -> (Pt -> Pt) ++ conical(a,b) transforms from conical coordinates to Cartesian coordinates: ++ \spad{conical(a,b)} is a function which will map the point \spad{(lambda,mu,nu)} to ++ \spad{x = lambda*mu*nu/(a*b)}, ++ \spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))}, ++ \spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}. Implementation ==> add cartesian pt == -- we just want to interpret the cartesian coordinates -- from the first N elements of the point - so the -- identity function will do pt polar pt0 == pt := copy pt0 r := elt(pt0,1); theta := elt(pt0,2) pt.1 := r * cos(theta); pt.2 := r * sin(theta) pt cylindrical pt0 == polar pt0 -- apply polar transformation to first 2 coordinates spherical pt0 == pt := copy pt0 r := elt(pt0,1); theta := elt(pt0,2); phi := elt(pt0,3) pt.1 := r * sin(phi) * cos(theta); pt.2 := r * sin(phi) * sin(theta) pt.3 := r * cos(phi) pt parabolic pt0 == pt := copy pt0 u := elt(pt0,1); v := elt(pt0,2) pt.1 := (u*u - v*v)/(2::R) ; pt.2 := u*v pt parabolicCylindrical pt0 == parabolic pt0 -- apply parabolic transformation to first 2 coordinates paraboloidal pt0 == pt := copy pt0 u := elt(pt0,1); v := elt(pt0,2); phi := elt(pt0,3) pt.1 := u*v*cos(phi); pt.2 := u*v*sin(phi); pt.3 := (u*u - v*v)/(2::R) pt elliptic a == pt := copy(#1) u := elt(#1,1); v := elt(#1,2) pt.1 := a*cosh(u)*cos(v); pt.2 := a*sinh(u)*sin(v) pt ellipticCylindrical a == elliptic a -- apply elliptic transformation to first 2 coordinates prolateSpheroidal a == pt := copy(#1) xi := elt(#1,1); eta := elt(#1,2); phi := elt(#1,3) pt.1 := a*sinh(xi)*sin(eta)*cos(phi) pt.2 := a*sinh(xi)*sin(eta)*sin(phi) pt.3 := a*cosh(xi)*cos(eta) pt oblateSpheroidal a == pt := copy(#1) xi := elt(#1,1); eta := elt(#1,2); phi := elt(#1,3) pt.1 := a*sinh(xi)*sin(eta)*cos(phi) pt.2 := a*cosh(xi)*cos(eta)*sin(phi) pt.3 := a*sinh(xi)*sin(eta) pt bipolar a == pt := copy(#1) u := elt(#1,1); v := elt(#1,2) pt.1 := a*sinh(v)/(cosh(v)-cos(u)) pt.2 := a*sin(u)/(cosh(v)-cos(u)) pt bipolarCylindrical a == bipolar a -- apply bipolar transformation to first 2 coordinates toroidal a == pt := copy(#1) u := elt(#1,1); v := elt(#1,2); phi := elt(#1,3) pt.1 := a*sinh(v)*cos(phi)/(cosh(v)-cos(u)) pt.2 := a*sinh(v)*sin(phi)/(cosh(v)-cos(u)) pt.3 := a*sin(u)/(cosh(v)-cos(u)) pt conical(a,b) == pt := copy(#1) lambda := elt(#1,1); mu := elt(#1,2); nu := elt(#1,3) pt.1 := lambda*mu*nu/(a*b) pt.2 := lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2)) pt.3 := lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2)) pt @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package COORDSYS CoordinateSystems>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}