\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra cont.spad} \author{Brian Dupee} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package ESCONT ExpertSystemContinuityPackage} <<package ESCONT ExpertSystemContinuityPackage>>= )abbrev package ESCONT ExpertSystemContinuityPackage ++ Author: Brian Dupee ++ Date Created: May 1994 ++ Date Last Updated: June 1995 ++ Basic Operations: problemPoints, singularitiesOf, zerosOf ++ Related Constructors: ++ Description: ++ ExpertSystemContinuityPackage is a package of functions for the use of domains ++ belonging to the category \axiomType{NumericalIntegration}. ExpertSystemContinuityPackage(): E == I where EF2 ==> ExpressionFunctions2 FI ==> Fraction Integer EFI ==> Expression Fraction Integer PFI ==> Polynomial Fraction Integer DF ==> DoubleFloat LDF ==> List DoubleFloat EDF ==> Expression DoubleFloat VEDF ==> Vector Expression DoubleFloat SDF ==> Stream DoubleFloat SS ==> Stream String EEDF ==> Equation Expression DoubleFloat LEDF ==> List Expression DoubleFloat KEDF ==> Kernel Expression DoubleFloat LKEDF ==> List Kernel Expression DoubleFloat PDF ==> Polynomial DoubleFloat FPDF ==> Fraction Polynomial DoubleFloat OCDF ==> OrderedCompletion DoubleFloat SOCDF ==> Segment OrderedCompletion DoubleFloat NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) UP ==> UnivariatePolynomial BO ==> BasicOperator RS ==> Record(zeros: SDF,ones: SDF,singularities: SDF) E ==> with getlo : SOCDF -> DF ++ getlo(u) gets the \axiomType{DoubleFloat} equivalent of ++ the first endpoint of the range \axiom{u} gethi : SOCDF -> DF ++ gethi(u) gets the \axiomType{DoubleFloat} equivalent of ++ the second endpoint of the range \axiom{u} functionIsFracPolynomial?: NIA -> Boolean ++ functionIsFracPolynomial?(args) tests whether the function ++ can be retracted to \axiomType{Fraction(Polynomial(DoubleFloat))} problemPoints:(EDF,Symbol,SOCDF) -> List DF ++ problemPoints(f,var,range) returns a list of possible problem points ++ by looking at the zeros of the denominator of the function \spad{f} ++ if it can be retracted to \axiomType{Polynomial(DoubleFloat)}. zerosOf:(EDF,List Symbol,SOCDF) -> SDF ++ zerosOf(e,vars,range) returns a list of points ++ (\axiomType{Doublefloat}) at which a NAG fortran version of \spad{e} ++ will most likely produce an error. singularitiesOf: (EDF,List Symbol,SOCDF) -> SDF ++ singularitiesOf(e,vars,range) returns a list of points ++ (\axiomType{Doublefloat}) at which a NAG fortran ++ version of \spad{e} will most likely produce ++ an error. This includes those points which evaluate to 0/0. singularitiesOf: (Vector EDF,List Symbol,SOCDF) -> SDF ++ singularitiesOf(v,vars,range) returns a list of points ++ (\axiomType{Doublefloat}) at which a NAG fortran ++ version of \spad{v} will most likely produce ++ an error. This includes those points which evaluate to 0/0. polynomialZeros:(PFI,Symbol,SOCDF) -> LDF ++ polynomialZeros(fn,var,range) calculates the real zeros of the ++ polynomial which are contained in the given interval. It returns ++ a list of points (\axiomType{Doublefloat}) for which the univariate ++ polynomial \spad{fn} is zero. df2st:DF -> String ++ df2st(n) coerces a \axiomType{DoubleFloat} to \axiomType{String} ldf2lst:LDF -> List String ++ ldf2lst(ln) coerces a List of \axiomType{DoubleFloat} to ++ \axiomType{List}(\axiomType{String}) sdf2lst:SDF -> List String ++ sdf2lst(ln) coerces a Stream of \axiomType{DoubleFloat} to ++ \axiomType{List}(\axiomType{String}) I ==> ExpertSystemToolsPackage add import ExpertSystemToolsPackage functionIsPolynomial?(args:NIA):Boolean == -- tests whether the function can be retracted to a polynomial (retractIfCan(args.fn)@Union(PDF,"failed"))$EDF case PDF isPolynomial?(f:EDF):Boolean == -- tests whether the function can be retracted to a polynomial (retractIfCan(f)@Union(PDF,"failed"))$EDF case PDF isConstant?(f:EDF):Boolean == -- tests whether the function can be retracted to a constant (DoubleFloat) (retractIfCan(f)@Union(DF,"failed"))$EDF case DF denominatorIsPolynomial?(args:NIA):Boolean == -- tests if the denominator can be retracted to polynomial a:= copy args a.fn:=denominator(args.fn) (functionIsPolynomial?(a))@Boolean denIsPolynomial?(f:EDF):Boolean == -- tests if the denominator can be retracted to polynomial (isPolynomial?(denominator f))@Boolean listInRange(l:LDF,range:SOCDF):LDF == -- returns a list with only those elements internal to the range range [t for t in l | in?(t,range)] loseUntil(l:SDF,a:DF):SDF == empty?(l)$SDF => l f := first(l)$SDF (abs(f) <= abs(a)) => loseUntil(rest(l)$SDF,a) l retainUntil(l:SDF,a:DF,b:DF,flag:Boolean):SDF == empty?(l)$SDF => l f := first(l)$SDF (in?(f)$ExpertSystemContinuityPackage1(a,b)) => concat(f,retainUntil(rest(l),a,b,false)) flag => empty()$SDF retainUntil(rest(l),a,b,true) streamInRange(l:SDF,range:SOCDF):SDF == -- returns a stream with only those elements internal to the range range a := getlo(range := dfRange(range)) b := gethi(range) explicitlyFinite?(l) => select(in?$ExpertSystemContinuityPackage1(a,b),l)$SDF negative?(a*b) => retainUntil(l,a,b,false) negative?(a) => l := loseUntil(l,b) retainUntil(l,a,b,false) l := loseUntil(l,a) retainUntil(l,a,b,false) getStream(n:Symbol,s:String):SDF == import RS entry?(n,bfKeys()$BasicFunctions)$(List(Symbol)) => c := bfEntry(n)$BasicFunctions (s = "zeros")@Boolean => c.zeros (s = "singularities")@Boolean => c.singularities (s = "ones")@Boolean => c.ones empty()$SDF polynomialZeros(fn:PFI,var:Symbol,range:SOCDF):LDF == up := unmakeSUP(univariate(fn)$PFI)$UP(var,FI) range := dfRange(range) r:Record(left:FI,right:FI) := [df2fi(getlo(range)), df2fi(gethi(range))] ans:List(Record(left:FI,right:FI)) := realZeros(up,r,1/1000000000000000000)$RealZeroPackageQ(UP(var,FI)) listInRange(dflist(ans),range) functionIsFracPolynomial?(args:NIA):Boolean == -- tests whether the function can be retracted to a fraction -- where both numerator and denominator are polynomial (retractIfCan(args.fn)@Union(FPDF,"failed"))$EDF case FPDF problemPoints(f:EDF,var:Symbol,range:SOCDF):LDF == (denIsPolynomial?(f))@Boolean => c := retract(edf2efi(denominator(f)))@PFI polynomialZeros(c,var,range) empty()$LDF zerosOf(e:EDF,vars:List Symbol,range:SOCDF):SDF == (u := isQuotient(e)) case EDF => singularitiesOf(u,vars,range) k := kernels(e)$EDF ((nk := # k) = 0)@Boolean => empty()$SDF -- constant found. (nk = 1)@Boolean => -- single expression found. ker := first(k)$LKEDF n := name(operator(ker)$KEDF)$BO entry?(n,vars) => -- polynomial found. c := retract(edf2efi(e))@PFI coerce(polynomialZeros(c,n,range))$SDF a := first(argument(ker)$KEDF)$LEDF (not (n = log :: Symbol)@Boolean) and ((w := isPlus a) case LEDF) => var:Symbol := first(variables(a)) c:EDF := w.2 c1:EDF := w.1 -- entry?(c1,[b::EDF for b in vars]) and (one?(# vars)) => entry?(c1,[b::EDF for b in vars]) and ((# vars) = 1) => c2:DF := edf2df c c3 := c2 :: OCDF varEdf := var :: EDF varEqn := equation(varEdf,c1-c)$EEDF range2 := (lo(range)+c3)..(hi(range)+c3) s := zerosOf(subst(e,varEqn)$EDF,vars,range2) st := map(#1-c2,s)$StreamFunctions2(DF,DF) streamInRange(st,range) zerosOf(a,vars,range) (t := isPlus(e)$EDF) case LEDF => -- constant + expression # t > 2 => empty()$SDF entry?(a,[b::EDF for b in vars]) => -- finds entries like sqrt(x) st := getStream(n,"ones") o := edf2df(second(t)$LEDF) -- one?(o) or one?(-o) => -- is it like (f(x) -/+ 1) (o = 1) or (-o = 1) => -- is it like (f(x) -/+ 1) st := map(-#1/o,st)$StreamFunctions2(DF,DF) streamInRange(st,range) empty()$SDF empty()$SDF entry?(a,[b::EDF for b in vars]) => -- finds entries like sqrt(x) st := getStream(n,"zeros") streamInRange(st,range) (n = tan :: Symbol)@Boolean => concat([zerosOf(a,vars,range),singularitiesOf(a,vars,range)]) (n = sin :: Symbol)@Boolean => concat([zerosOf(a,vars,range),singularitiesOf(a,vars,range)]) empty()$SDF (t := isPlus(e)$EDF) case LEDF => empty()$SDF -- INCOMPLETE!!! (v := isTimes(e)$EDF) case LEDF => concat([zerosOf(u,vars,range) for u in v]) empty()$SDF singularitiesOf(e:EDF,vars:List Symbol,range:SOCDF):SDF == (u := isQuotient(e)) case EDF => zerosOf(u,vars,range) (t := isPlus e) case LEDF => concat([singularitiesOf(u,vars,range) for u in t]) (v := isTimes e) case LEDF => concat([singularitiesOf(u,vars,range) for u in v]) (k := mainKernel e) case KEDF => n := name(operator k) entry?(n,vars) => coerce(problemPoints(e,n,range))$SDF a:EDF := (argument k).1 (not (n = log :: Symbol)@Boolean) and ((w := isPlus a) case LEDF) => var:Symbol := first(variables(a)) c:EDF := w.2 c1:EDF := w.1 -- entry?(c1,[b::EDF for b in vars]) and (one?(# vars)) => entry?(c1,[b::EDF for b in vars]) and ((# vars) = 1) => c2:DF := edf2df c c3 := c2 :: OCDF varEdf := var :: EDF varEqn := equation(varEdf,c1-c)$EEDF range2 := (lo(range)+c3)..(hi(range)+c3) s := singularitiesOf(subst(e,varEqn)$EDF,vars,range2) st := map(#1-c2,s)$StreamFunctions2(DF,DF) streamInRange(st,range) singularitiesOf(a,vars,range) entry?(a,[b::EDF for b in vars]) => st := getStream(n,"singularities") streamInRange(st,range) (n = log :: Symbol)@Boolean => concat([zerosOf(a,vars,range),singularitiesOf(a,vars,range)]) singularitiesOf(a,vars,range) empty()$SDF singularitiesOf(v:VEDF,vars:List Symbol,range:SOCDF):SDF == ls := [singularitiesOf(u,vars,range) for u in entries(v)$VEDF] concat(ls)$SDF @ \section{package ESCONT1 ExpertSystemContinuityPackage1} <<package ESCONT1 ExpertSystemContinuityPackage1>>= )abbrev package ESCONT1 ExpertSystemContinuityPackage1 ++ Author: Brian Dupee ++ Date Created: May 1994 ++ Date Last Updated: June 1995 ++ Basic Operations: problemPoints, singularitiesOf, zerosOf ++ Related Constructors: ++ Description: ++ ExpertSystemContinuityPackage1 exports a function to check range inclusion ExpertSystemContinuityPackage1(A:DF,B:DF): E == I where EF2 ==> ExpressionFunctions2 FI ==> Fraction Integer EFI ==> Expression Fraction Integer PFI ==> Polynomial Fraction Integer DF ==> DoubleFloat LDF ==> List DoubleFloat EDF ==> Expression DoubleFloat VEDF ==> Vector Expression DoubleFloat SDF ==> Stream DoubleFloat SS ==> Stream String EEDF ==> Equation Expression DoubleFloat LEDF ==> List Expression DoubleFloat KEDF ==> Kernel Expression DoubleFloat LKEDF ==> List Kernel Expression DoubleFloat PDF ==> Polynomial DoubleFloat FPDF ==> Fraction Polynomial DoubleFloat OCDF ==> OrderedCompletion DoubleFloat SOCDF ==> Segment OrderedCompletion DoubleFloat NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) UP ==> UnivariatePolynomial BO ==> BasicOperator RS ==> Record(zeros: SDF,ones: SDF,singularities: SDF) E ==> with in?:DF -> Boolean ++ in?(p) tests whether point p is internal to the range [\spad{A..B}] I ==> add in?(p:DF):Boolean == a:Boolean := (p < B)$DF b:Boolean := (A < p)$DF (a and b)@Boolean @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package ESCONT ExpertSystemContinuityPackage>> <<package ESCONT1 ExpertSystemContinuityPackage1>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}