\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra constant.spad} \author{Manuel Bronstein, James Davenport} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain IAN InnerAlgebraicNumber} <<domain IAN InnerAlgebraicNumber>>= )abbrev domain IAN InnerAlgebraicNumber ++ Algebraic closure of the rational numbers ++ Author: Manuel Bronstein ++ Date Created: 22 March 1988 ++ Date Last Updated: 4 October 1995 (JHD) ++ Description: Algebraic closure of the rational numbers. ++ Keywords: algebraic, number. InnerAlgebraicNumber(): Exports == Implementation where Z ==> Integer FE ==> Expression Z K ==> Kernel % P ==> SparseMultivariatePolynomial(Z, K) SUP ==> SparseUnivariatePolynomial Exports ==> Join(ExpressionSpace, AlgebraicallyClosedField, RetractableTo Z, RetractableTo Fraction Z, LinearlyExplicitRingOver Z, RealConstant, LinearlyExplicitRingOver Fraction Z, CharacteristicZero, ConvertibleTo Complex Float, DifferentialRing, CoercibleFrom P) with numer : % -> P ++ numer(f) returns the numerator of f viewed as a ++ polynomial in the kernels over Z. denom : % -> P ++ denom(f) returns the denominator of f viewed as a ++ polynomial in the kernels over Z. reduce : % -> % ++ reduce(f) simplifies all the unreduced algebraic numbers ++ present in f by applying their defining relations. trueEqual : (%,%) -> Boolean ++ trueEqual(x,y) tries to determine if the two numbers are equal norm : (SUP(%),Kernel %) -> SUP(%) ++ norm(p,k) computes the norm of the polynomial p ++ with respect to the extension generated by kernel k norm : (SUP(%),List Kernel %) -> SUP(%) ++ norm(p,l) computes the norm of the polynomial p ++ with respect to the extension generated by kernels l norm : (%,Kernel %) -> % ++ norm(f,k) computes the norm of the algebraic number f ++ with respect to the extension generated by kernel k norm : (%,List Kernel %) -> % ++ norm(f,l) computes the norm of the algebraic number f ++ with respect to the extension generated by kernels l Implementation ==> FE add macro ALGOP == '%alg Rep := FE -- private mainRatDenom(f:%):% == ratDenom(f::Rep::FE)$AlgebraicManipulations(Integer, FE)::Rep::% -- mv:= mainVariable denom f -- mv case "failed" => f -- algv:=mv::K -- q:=univariate(f, algv, minPoly(algv))$PolynomialCategoryQuotientFunctions(IndexedExponents K,K,Integer,P,%) -- q(algv::%) findDenominator(z:SUP %):Record(num:SUP %,den:%) == zz:=z while not(zz=0) repeat dd:=(denom leadingCoefficient zz)::% not(dd=1) => rec:=findDenominator(dd*z) return [rec.num,rec.den*dd] zz:=reductum zz [z,1] makeUnivariate(p:P,k:Kernel %):SUP % == map(#1::%,univariate(p,k))$SparseUnivariatePolynomialFunctions2(P,%) -- public a,b:% differentiate(x:%):% == 0 zero? a == zero? numer a one? a == one? numer a and one? denom a x:% / y:% == mainRatDenom(x /$Rep y) x:% ** n:Integer == negative? n => mainRatDenom (x **$Rep n) x **$Rep n trueEqual(a,b) == -- if two algebraic numbers have the same norm (after deleting repeated -- roots, then they are certainly conjugates. Note that we start with a -- monic polynomial, so don't have to check for constant factors. -- this will be fooled by sqrt(2) and -sqrt(2), but the = in -- AlgebraicNumber knows what to do about this. ka:=reverse tower a kb:=reverse tower b empty? ka and empty? kb => retract(a)@Fraction Z = retract(b)@Fraction Z pa,pb:SparseUnivariatePolynomial % pa:=monomial(1,1)-monomial(a,0) pb:=monomial(1,1)-monomial(b,0) na:=map(retract,norm(pa,ka))$SparseUnivariatePolynomialFunctions2(%,Fraction Z) nb:=map(retract,norm(pb,kb))$SparseUnivariatePolynomialFunctions2(%,Fraction Z) (sa:=squareFreePart(na)) = (sb:=squareFreePart(nb)) => true g:=gcd(sa,sb) (dg:=degree g) = 0 => false -- of course, if these have a factor in common, then the -- answer is really ambiguous, so we ought to be using Duval-type -- technology dg = degree sa or dg = degree sb => true false norm(z:%,k:Kernel %): % == p:=minPoly k n:=makeUnivariate(numer z,k) d:=makeUnivariate(denom z,k) resultant(n,p)/resultant(d,p) norm(z:%,l:List Kernel %): % == for k in l repeat z:=norm(z,k) z norm(z:SUP %,k:Kernel %):SUP % == p:=map(#1::SUP %,minPoly k)$SparseUnivariatePolynomialFunctions2(%,SUP %) f:=findDenominator z zz:=map(makeUnivariate(numer #1,k),f.num)$SparseUnivariatePolynomialFunctions2( %,SUP %) zz:=swap(zz)$CommuteUnivariatePolynomialCategory(%,SUP %,SUP SUP %) resultant(p,zz)/norm(f.den,k) norm(z:SUP %,l:List Kernel %): SUP % == for k in l repeat z:=norm(z,k) z belong? op == belong?(op)$ExpressionSpace_&(%) or has?(op, ALGOP) convert(x:%):Float == retract map(#1::Float, x pretend FE)$ExpressionFunctions2(Z,Float) convert(x:%):DoubleFloat == retract map(#1::DoubleFloat, x pretend FE)$ExpressionFunctions2(Z, DoubleFloat) convert(x:%):Complex(Float) == retract map(#1::Complex(Float), x pretend FE)$ExpressionFunctions2(Z, Complex Float) @ \section{domain AN AlgebraicNumber} <<domain AN AlgebraicNumber>>= )abbrev domain AN AlgebraicNumber ++ Algebraic closure of the rational numbers ++ Author: James Davenport ++ Date Created: 9 October 1995 ++ Date Last Updated: 10 October 1995 (JHD) ++ Description: Algebraic closure of the rational numbers, with mathematical = ++ Keywords: algebraic, number. AlgebraicNumber(): Exports == Implementation where Z ==> Integer P ==> SparseMultivariatePolynomial(Z, Kernel %) SUP ==> SparseUnivariatePolynomial Exports ==> Join(ExpressionSpace, AlgebraicallyClosedField, RetractableTo Z, RetractableTo Fraction Z, LinearlyExplicitRingOver Z, RealConstant, LinearlyExplicitRingOver Fraction Z, CharacteristicZero, ConvertibleTo Complex Float, DifferentialRing, CoercibleFrom P) with numer : % -> P ++ numer(f) returns the numerator of f viewed as a ++ polynomial in the kernels over Z. denom : % -> P ++ denom(f) returns the denominator of f viewed as a ++ polynomial in the kernels over Z. reduce : % -> % ++ reduce(f) simplifies all the unreduced algebraic numbers ++ present in f by applying their defining relations. norm : (SUP(%),Kernel %) -> SUP(%) ++ norm(p,k) computes the norm of the polynomial p ++ with respect to the extension generated by kernel k norm : (SUP(%),List Kernel %) -> SUP(%) ++ norm(p,l) computes the norm of the polynomial p ++ with respect to the extension generated by kernels l norm : (%,Kernel %) -> % ++ norm(f,k) computes the norm of the algebraic number f ++ with respect to the extension generated by kernel k norm : (%,List Kernel %) -> % ++ norm(f,l) computes the norm of the algebraic number f ++ with respect to the extension generated by kernels l Implementation == InnerAlgebraicNumber add zero? a == trueEqual(rep a, rep 0) one? a == trueEqual(rep a, rep 1) a=b == trueEqual(rep a - rep b,rep 0) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain IAN InnerAlgebraicNumber>> <<domain AN AlgebraicNumber>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}