\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra combinat.spad} \author{Martin Brock, Robert Sutor, Michael Monagan} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package COMBINAT IntegerCombinatoricFunctions} <<package COMBINAT IntegerCombinatoricFunctions>>= )abbrev package COMBINAT IntegerCombinatoricFunctions ++ Authors: Martin Brock, Robert Sutor, Michael Monagan ++ Date Created: June 1987 ++ Date Last Updated: ++ Basic Operations: ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keywords: integer, combinatoric function ++ Examples: ++ References: ++ Description: ++ The \spadtype{IntegerCombinatoricFunctions} package provides some ++ standard functions in combinatorics. Z ==> Integer N ==> NonNegativeInteger SUP ==> SparseUnivariatePolynomial IntegerCombinatoricFunctions(I:IntegerNumberSystem): with binomial: (I, I) -> I ++ \spad{binomial(n,r)} returns the binomial coefficient ++ \spad{C(n,r) = n!/(r! (n-r)!)}, where \spad{n >= r >= 0}. ++ This is the number of combinations of n objects taken r at a time. factorial: I -> I ++ \spad{factorial(n)} returns \spad{n!}. this is the product of all ++ integers between 1 and n (inclusive). ++ Note: \spad{0!} is defined to be 1. multinomial: (I, List I) -> I ++ \spad{multinomial(n,[m1,m2,...,mk])} returns the multinomial ++ coefficient \spad{n!/(m1! m2! ... mk!)}. partition: I -> I ++ \spad{partition(n)} returns the number of partitions of the integer n. ++ This is the number of distinct ways that n can be written as ++ a sum of positive integers. permutation: (I, I) -> I ++ \spad{permutation(n)} returns \spad{!P(n,r) = n!/(n-r)!}. This is ++ the number of permutations of n objects taken r at a time. stirling1: (I, I) -> I ++ \spad{stirling1(n,m)} returns the Stirling number of the first kind ++ denoted \spad{S[n,m]}. stirling2: (I, I) -> I ++ \spad{stirling2(n,m)} returns the Stirling number of the second kind ++ denoted \spad{SS[n,m]}. == add F : Record(Fn:I, Fv:I) := [0,1] B : Record(Bn:I, Bm:I, Bv:I) := [0,0,0] S : Record(Sn:I, Sp:SUP I) := [0,0] P : IndexedFlexibleArray(I,0) := new(1,1)$IndexedFlexibleArray(I,0) partition n == -- This is the number of ways of expressing n as a sum of positive -- integers, without regard to order. For example partition 5 = 7 -- since 5 = 1+1+1+1+1 = 1+1+1+2 = 1+2+2 = 1+1+3 = 1+4 = 2+3 = 5 . -- Uses O(sqrt n) term recurrence from Abramowitz & Stegun pp. 825 -- p(n) = sum (-1)**k p(n-j) where 0 < j := (3*k**2+-k) quo 2 <= n minIndex(P) ~= 0 => error "Partition: must have minIndex of 0" m := #P n < 0 => error "partition is not defined for negative integers" n < m::I => P(convert(n)@Z) concat!(P, new((convert(n+1)@Z - m)::N,0)$IndexedFlexibleArray(I,0)) for i in m..convert(n)@Z repeat s:I := 1 t:I := 0 for k in 1.. repeat l := (3*k*k-k) quo 2 l > i => leave u := l+k t := t + s * P(convert(i-l)@Z) u > i => leave t := t + s * P(convert(i-u)@Z) s := -s P.i := t P(convert(n)@Z) factorial n == s,f,t : I n < 0 => error "factorial not defined for negative integers" if n <= F.Fn then s := f := 1 else (s, f) := F for k in convert(s+1)@Z .. convert(n)@Z by 2 repeat if k::I = n then t := n else t := k::I * (k+1)::I f := t * f F.Fn := n F.Fv := f binomial(n, m) == s,b:I n < 0 or m < 0 or m > n => 0 m = 0 => 1 n < 2*m => binomial(n, n-m) (s,b) := (0,1) if B.Bn = n then B.Bm = m+1 => b := (B.Bv * (m+1)) quo (n-m) B.Bn := n B.Bm := m return(B.Bv := b) if m >= B.Bm then (s := B.Bm; b := B.Bv) else (s,b) := (0,1) for k in convert(s+1)@Z .. convert(m)@Z repeat b := (b*(n-k::I+1)) quo k::I B.Bn := n B.Bm := m B.Bv := b multinomial(n, m) == for t in m repeat t < 0 => return 0 n < _+/m => 0 s:I := 1 for t in m repeat s := s * factorial t factorial n quo s permutation(n, m) == t:I m < 0 or n < m => 0 m := n-m p:I := 1 for k in convert(m+1)@Z .. convert(n)@Z by 2 repeat if k::I = n then t := n else t := (k*(k+1))::I p := p * t p stirling1(n, m) == -- Definition: (-1)**(n-m) S[n,m] is the number of -- permutations of n symbols which have m cycles. n < 0 or m < 1 or m > n => 0 m = n => 1 S.Sn = n => coefficient(S.Sp, convert(m)@Z :: N) x := monomial(1, 1)$SUP(I) S.Sn := n S.Sp := x for k in 1 .. convert(n-1)@Z repeat S.Sp := S.Sp * (x - k::SUP(I)) coefficient(S.Sp, convert(m)@Z :: N) stirling2(n, m) == -- definition: SS[n,m] is the number of ways of partitioning -- a set of n elements into m non-empty subsets n < 0 or m < 1 or m > n => 0 m = 1 or n = m => 1 s:I := if odd? m then -1 else 1 t:I := 0 for k in 1..convert(m)@Z repeat s := -s t := t + s * binomial(m, k::I) * k::I ** (convert(n)@Z :: N) t quo factorial m @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package COMBINAT IntegerCombinatoricFunctions>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}