\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra clip.spad} \author{Clifton J. Williamson} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package CLIP TwoDimensionalPlotClipping} <<package CLIP TwoDimensionalPlotClipping>>= )abbrev package CLIP TwoDimensionalPlotClipping ++ Automatic clipping for 2-dimensional plots ++ Author: Clifton J. Williamson ++ Date Created: 22 December 1989 ++ Date Last Updated: 10 July 1990 ++ Keywords: plot, singularity ++ Examples: ++ References: TwoDimensionalPlotClipping(): Exports == Implementation where ++ The purpose of this package is to provide reasonable plots of ++ functions with singularities. B ==> Boolean L ==> List SEG ==> Segment RN ==> Fraction Integer SF ==> DoubleFloat Pt ==> Point DoubleFloat PLOT ==> Plot CLIPPED ==> Record(brans: L L Pt,xValues: SEG SF,yValues: SEG SF) Exports ==> with clip: PLOT -> CLIPPED ++ clip(p) performs two-dimensional clipping on a plot, p, from ++ the domain \spadtype{Plot} for the graph of one variable, ++ \spad{y = f(x)}; the default parameters \spad{1/4} for the fraction ++ and \spad{5/1} for the scale are used in the \spadfun{clip} function. clip: (PLOT,RN,RN) -> CLIPPED ++ clip(p,frac,sc) performs two-dimensional clipping on a plot, p, ++ from the domain \spadtype{Plot} for the graph of one variable ++ \spad{y = f(x)}; the fraction parameter is specified by \spad{frac} ++ and the scale parameter is specified by \spad{sc} for use in the ++ \spadfun{clip} function. clipParametric: PLOT -> CLIPPED ++ clipParametric(p) performs two-dimensional clipping on a plot, ++ p, from the domain \spadtype{Plot} for the parametric curve ++ \spad{x = f(t)}, \spad{y = g(t)}; the default parameters \spad{1/2} ++ for the fraction and \spad{5/1} for the scale are used in the ++ \fakeAxiomFun{iClipParametric} subroutine, which is called by this ++ function. clipParametric: (PLOT,RN,RN) -> CLIPPED ++ clipParametric(p,frac,sc) performs two-dimensional clipping on a ++ plot, p, from the domain \spadtype{Plot} for the parametric curve ++ \spad{x = f(t)}, \spad{y = g(t)}; the fraction parameter is ++ specified by \spad{frac} and the scale parameter is specified ++ by \spad{sc} for use in the \fakeAxiomFun{iClipParametric} subroutine, ++ which is called by this function. clipWithRanges: (L L Pt,SF,SF,SF,SF) -> CLIPPED ++ clipWithRanges(pointLists,xMin,xMax,yMin,yMax) performs clipping ++ on a list of lists of points, \spad{pointLists}. Clipping is ++ done within the specified ranges of \spad{xMin}, \spad{xMax} and ++ \spad{yMin}, \spad{yMax}. This function is used internally by ++ the \fakeAxiomFun{iClipParametric} subroutine in this package. clip: L Pt -> CLIPPED ++ clip(l) performs two-dimensional clipping on a curve l, which is ++ a list of points; the default parameters \spad{1/2} for the ++ fraction and \spad{5/1} for the scale are used in the ++ \fakeAxiomFun{iClipParametric} subroutine, which is called by this ++ function. clip: L L Pt -> CLIPPED ++ clip(ll) performs two-dimensional clipping on a list of lists ++ of points, \spad{ll}; the default parameters \spad{1/2} for ++ the fraction and \spad{5/1} for the scale are used in the ++ \fakeAxiomFun{iClipParametric} subroutine, which is called by this ++ function. Implementation ==> add import PointPackage(DoubleFloat) import ListFunctions2(Point DoubleFloat,DoubleFloat) point:(SF,SF) -> Pt intersectWithHorizLine:(SF,SF,SF,SF,SF) -> Pt intersectWithVertLine:(SF,SF,SF,SF,SF) -> Pt intersectWithBdry:(SF,SF,SF,SF,Pt,Pt) -> Pt discardAndSplit: (L Pt,Pt -> B,SF,SF,SF,SF) -> L L Pt norm: Pt -> SF iClipParametric: (L L Pt,RN,RN) -> CLIPPED findPt: L L Pt -> Union(Pt,"failed") Pnan?:Pt ->Boolean Pnan? p == any?(nan?,p) iClipParametric(pointLists,fraction,scale) == import Point SF import List Point SF -- error checks and special cases negative? fraction or (fraction > 1) => error "clipDraw: fraction should be between 0 and 1" empty? pointLists => [nil(),segment(0,0),segment(0,0)] -- put all points together , sort them according to norm sortedList := sort(norm(#1) < norm(#2),select(not Pnan? #1,concat pointLists)) empty? sortedList => [nil(),segment(0,0),segment(0,0)] n := # sortedList num := numer fraction den := denom fraction clipNum := (n * num) quo den lastN := n - 1 - clipNum firstPt := first sortedList xMin : SF := xCoord firstPt xMax : SF := xCoord firstPt yMin : SF := yCoord firstPt yMax : SF := yCoord firstPt -- calculate min/max for the first (1-fraction)*N points -- this contracts the range -- this unnecessarily clips monotonic functions (step-function, x^(high power),etc.) for k in 0..lastN for pt in rest sortedList repeat xMin := min(xMin,xCoord pt) xMax := max(xMax,xCoord pt) yMin := min(yMin,yCoord pt) yMax := max(yMax,yCoord pt) xDiff := xMax - xMin; yDiff := yMax - yMin xDiff = 0 => yDiff = 0 => [pointLists,segment(xMin-1,xMax+1),segment(yMin-1,yMax+1)] [pointLists,segment(xMin-1,xMax+1),segment(yMin,yMax)] yDiff = 0 => [pointLists,segment(xMin,xMax),segment(yMin-1,yMax+1)] numm := numer scale; denn := denom scale -- now expand the range by scale xMin := xMin - (numm :: SF) * xDiff / (denn :: SF) xMax := xMax + (numm :: SF) * xDiff / (denn :: SF) yMin := yMin - (numm :: SF) * yDiff / (denn :: SF) yMax := yMax + (numm :: SF) * yDiff / (denn :: SF) -- clip with the calculated range newclip:=clipWithRanges(pointLists,xMin,xMax,yMin,yMax) -- if we split the lists use the new clip # (newclip.brans) > # pointLists => newclip -- calculate extents xs :L SF:= map (xCoord,sortedList) ys :L SF:= map (yCoord,sortedList) xMin :SF :=reduce (min,xs) yMin :SF :=reduce (min,ys) xMax :SF :=reduce (max,xs) yMax :SF :=reduce (max,ys) xseg:SEG SF :=xMin..xMax yseg:SEG SF :=yMin..yMax -- return original [pointLists,xseg,yseg]@CLIPPED point(xx,yy) == point(l : L SF := [xx,yy]) intersectWithHorizLine(x1,y1,x2,y2,yy) == x1 = x2 => point(x1,yy) point(x1 + (x2 - x1)*(yy - y1)/(y2 - y1),yy) intersectWithVertLine(x1,y1,x2,y2,xx) == y1 = y2 => point(xx,y1) point(xx,y1 + (y2 - y1)*(xx - x1)/(x2 - x1)) intersectWithBdry(xMin,xMax,yMin,yMax,pt1,pt2) == -- pt1 is in rectangle, pt2 is not x1 := xCoord pt1; y1 := yCoord pt1 x2 := xCoord pt2; y2 := yCoord pt2 if y2 > yMax then pt2 := intersectWithHorizLine(x1,y1,x2,y2,yMax) x2 := xCoord pt2; y2 := yCoord pt2 if y2 < yMin then pt2 := intersectWithHorizLine(x1,y1,x2,y2,yMin) x2 := xCoord pt2; y2 := yCoord pt2 if x2 > xMax then pt2 := intersectWithVertLine(x1,y1,x2,y2,xMax) x2 := xCoord pt2; y2 := yCoord pt2 if x2 < xMin then pt2 := intersectWithVertLine(x1,y1,x2,y2,xMin) pt2 discardAndSplit(pointList,pred,xMin,xMax,yMin,yMax) == ans : L L Pt := nil() list : L Pt := nil() lastPt? : B := false lastPt : Pt := point(0,0) while not empty? pointList repeat pt := first pointList pointList := rest pointList pred(pt) => if (empty? list) and lastPt? then bdryPt := intersectWithBdry(xMin,xMax,yMin,yMax,pt,lastPt) -- print bracket [ coerce bdryPt ,coerce pt ] --list := cons(bdryPt,list) list := cons(pt,list) if not empty? list then bdryPt := intersectWithBdry(xMin,xMax,yMin,yMax,first list,pt) -- print bracket [ coerce bdryPt,coerce first list] --list := cons(bdryPt,list) ans := cons( list,ans) lastPt := pt lastPt? := true list := nil() empty? list => ans reverse! cons(reverse! list,ans) clip(plot,fraction,scale) == -- sayBrightly([" clip: "::OutputForm]$List(OutputForm))$Lisp negative? fraction or (fraction > 1/2) => error "clipDraw: fraction should be between 0 and 1/2" xVals := xRange plot empty?(pointLists := listBranches plot) => [nil(),xVals,segment(0,0)] #(pointLists := listBranches plot) > 1 => error "clipDraw: plot has more than one branch" empty?(pointList := first pointLists) => [nil(),xVals,segment(0,0)] sortedList := sort(yCoord(#1) < yCoord(#2),pointList) n := # sortedList; num := numer fraction; den := denom fraction clipNum := (n * num) quo den -- throw out points with large and small y-coordinates yMin := yCoord(sortedList.clipNum) yMax := yCoord(sortedList.(n - 1 - clipNum)) if nan? yMin then yMin : SF := 0 if nan? yMax then yMax : SF := 0 (yDiff := yMax - yMin) = 0 => [pointLists,xRange plot,segment(yMin - 1,yMax + 1)] numm := numer scale; denn := denom scale xMin := lo xVals; xMax := hi xVals yMin := yMin - (numm :: SF) * yDiff / (denn :: SF) yMax := yMax + (numm :: SF) * yDiff / (denn :: SF) lists := discardAndSplit(pointList,_ (yCoord(#1) < yMax) and (yCoord(#1) > yMin),xMin,xMax,yMin,yMax) yMin := yCoord(sortedList.clipNum) yMax := yCoord(sortedList.(n - 1 - clipNum)) if nan? yMin then yMin : SF := 0 if nan? yMax then yMax : SF := 0 for list in lists repeat for pt in list repeat if not nan?(yCoord pt) then yMin := min(yMin,yCoord pt) yMax := max(yMax,yCoord pt) [lists,xVals,segment(yMin,yMax)] clip(plot:PLOT) == clip(plot,1/4,5/1) norm(pt) == x := xCoord(pt); y := yCoord(pt) if nan? x then if nan? y then r:SF := 0 else r:SF := y**2 else if nan? y then r:SF := x**2 else r:SF := x**2 + y**2 r findPt lists == for list in lists repeat not empty? list => for p in list repeat not Pnan? p => return p "failed" clipWithRanges(pointLists,xMin,xMax,yMin,yMax) == lists : L L Pt := nil() for pointList in pointLists repeat lists := concat(lists,discardAndSplit(pointList,_ (xCoord(#1) <= xMax) and (xCoord(#1) >= xMin) and _ (yCoord(#1) <= yMax) and (yCoord(#1) >= yMin), _ xMin,xMax,yMin,yMax)) (pt := findPt lists) case "failed" => [nil(),segment(0,0),segment(0,0)] firstPt := pt :: Pt xMin : SF := xCoord firstPt; xMax : SF := xCoord firstPt yMin : SF := yCoord firstPt; yMax : SF := yCoord firstPt for list in lists repeat for pt: local in list repeat if not Pnan? pt then xMin := min(xMin,xCoord pt) xMax := max(xMax,xCoord pt) yMin := min(yMin,yCoord pt) yMax := max(yMax,yCoord pt) [lists,segment(xMin,xMax),segment(yMin,yMax)] clipParametric(plot,fraction,scale) == iClipParametric(listBranches plot,fraction,scale) clipParametric plot == clipParametric(plot,1/2,5/1) clip(l: L Pt) == iClipParametric(list l,1/2,5/1) clip(l: L L Pt) == iClipParametric(l,1/2,5/1) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package CLIP TwoDimensionalPlotClipping>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}