\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra cden.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package ICDEN InnerCommonDenominator}
<<package ICDEN InnerCommonDenominator>>=
)abbrev package ICDEN InnerCommonDenominator
--% InnerCommonDenominator
++ Author: Manuel Bronstein
++ Date Created: 2 May 1988
++ Date Last Updated: 22 Nov 1989
++ Description: InnerCommonDenominator provides functions to compute
++ the common denominator of a finite linear aggregate of elements
++ of the quotient field of an integral domain.
++ Keywords: gcd, quotient, common, denominator.
InnerCommonDenominator(R, Q, A, B): Exports == Implementation where
  R: IntegralDomain
  Q: QuotientFieldCategory R
  A: FiniteLinearAggregate R
  B: FiniteLinearAggregate Q
 
  Exports ==> with
    commonDenominator: B -> R 
      ++ commonDenominator([q1,...,qn]) returns a common denominator
      ++ d for q1,...,qn.
    clearDenominator : B -> A 
      ++ clearDenominator([q1,...,qn]) returns \spad{[p1,...,pn]} such that
      ++ \spad{qi = pi/d} where d is a common denominator for the qi's.
    splitDenominator : B -> Record(num: A, den: R)
      ++ splitDenominator([q1,...,qn]) returns
      ++ \spad{[[p1,...,pn], d]} such that
      ++ \spad{qi = pi/d} and d is a common denominator for the qi's.
 
  Implementation ==> add
    import FiniteLinearAggregateFunctions2(Q, B, R, A)
 
    clearDenominator l ==
      d := commonDenominator l
      map(numer(d * #1), l)
 
    splitDenominator l ==
      d := commonDenominator l
      [map(numer(d * #1), l), d]
 
    if R has GcdDomain then
      commonDenominator l == reduce(lcm, map(denom, l),1)
    else
      commonDenominator l == reduce("*", map(denom, l), 1)

@
\section{package CDEN CommonDenominator}
<<package CDEN CommonDenominator>>=
)abbrev package CDEN CommonDenominator
--% CommonDenominator
++ Author: Manuel Bronstein
++ Date Created: 2 May 1988
++ Date Last Updated: 22 Nov 1989
++ Description: CommonDenominator provides functions to compute the
++ common denominator of a finite linear aggregate of elements of
++ the quotient field of an integral domain.
++ Keywords: gcd, quotient, common, denominator.
CommonDenominator(R, Q, A): Exports == Implementation where
  R: IntegralDomain
  Q: QuotientFieldCategory R
  A: FiniteLinearAggregate Q
 
  Exports ==> with
    commonDenominator: A -> R
      ++ commonDenominator([q1,...,qn]) returns a common denominator
      ++ d for q1,...,qn.
    clearDenominator : A -> A
      ++ clearDenominator([q1,...,qn]) returns \spad{[p1,...,pn]} such that
      ++ \spad{qi = pi/d} where d is a common denominator for the qi's.
    splitDenominator : A -> Record(num: A, den: R)
      ++ splitDenominator([q1,...,qn]) returns
      ++ \spad{[[p1,...,pn], d]} such that
      ++ \spad{qi = pi/d} and d is a common denominator for the qi's.
 
  Implementation ==> add
    clearDenominator l ==
      d := commonDenominator l
      map(numer(d * #1)::Q, l)
 
    splitDenominator l ==
      d := commonDenominator l
      [map(numer(d * #1)::Q, l), d]
 
    if R has GcdDomain then
      qlcm: (Q, Q) -> Q
 
      qlcm(a, b)          == lcm(numer a, numer b)::Q
      commonDenominator l == numer reduce(qlcm, map(denom(#1)::Q, l), 1)
    else
      commonDenominator l == numer reduce("*", map(denom(#1)::Q, l), 1)

@
\section{package UPCDEN UnivariatePolynomialCommonDenominator}
<<package UPCDEN UnivariatePolynomialCommonDenominator>>=
)abbrev package UPCDEN UnivariatePolynomialCommonDenominator
--% UnivariatePolynomialCommonDenominator
++ Author: Manuel Bronstein
++ Date Created: 2 May 1988
++ Date Last Updated: 22 Feb 1990
++ Description: UnivariatePolynomialCommonDenominator provides
++ functions to compute the common denominator of the coefficients of
++ univariate polynomials over the quotient field of a gcd domain.
++ Keywords: gcd, quotient, common, denominator, polynomial.
 
UnivariatePolynomialCommonDenominator(R, Q, UP): Exports == Impl where
  R : IntegralDomain
  Q : QuotientFieldCategory R
  UP: UnivariatePolynomialCategory Q
 
  Exports ==> with
    commonDenominator: UP -> R
      ++ commonDenominator(q) returns a common denominator d for
      ++ the coefficients of q.
    clearDenominator : UP -> UP
      ++ clearDenominator(q) returns p such that \spad{q = p/d} where d is
      ++ a common denominator for the coefficients of q.
    splitDenominator : UP -> Record(num: UP, den: R)
      ++ splitDenominator(q) returns \spad{[p, d]} such that \spad{q = p/d} and d
      ++ is a common denominator for the coefficients of q.
 
  Impl ==> add
    import CommonDenominator(R, Q, List Q)
 
    commonDenominator p == commonDenominator coefficients p
 
    clearDenominator p ==
      d := commonDenominator p
      map(numer(d * #1)::Q, p)
 
    splitDenominator p ==
      d := commonDenominator p
      [map(numer(d * #1)::Q, p), d]

@
\section{package MCDEN MatrixCommonDenominator}
<<package MCDEN MatrixCommonDenominator>>=
)abbrev package MCDEN MatrixCommonDenominator
--% MatrixCommonDenominator
++ Author: Manuel Bronstein
++ Date Created: 2 May 1988
++ Date Last Updated: 20 Jul 1990
++ Description: MatrixCommonDenominator provides functions to
++ compute the common denominator of a matrix of elements of the
++ quotient field of an integral domain.
++ Keywords: gcd, quotient, matrix, common, denominator.
MatrixCommonDenominator(R, Q): Exports == Implementation where
  R: IntegralDomain
  Q: QuotientFieldCategory R
 
  VR ==> Vector R
  VQ ==> Vector Q
 
  Exports ==> with
    commonDenominator: Matrix Q -> R
      ++ commonDenominator(q) returns a common denominator d for
      ++ the elements of q.
    clearDenominator : Matrix Q -> Matrix R
      ++ clearDenominator(q) returns p such that \spad{q = p/d} where d is
      ++ a common denominator for the elements of q.
    splitDenominator : Matrix Q -> Record(num: Matrix R, den: R)
      ++ splitDenominator(q) returns \spad{[p, d]} such that \spad{q = p/d} and d
      ++ is a common denominator for the elements of q.
 
  Implementation ==> add
    import ListFunctions2(Q, R)
    import MatrixCategoryFunctions2(Q,VQ,VQ,Matrix Q,R,VR,VR,Matrix R)
 
    clearDenominator m ==
      d := commonDenominator m
      map(numer(d * #1), m)
 
    splitDenominator m ==
      d := commonDenominator m
      [map(numer(d * #1), m), d]
 
    if R has GcdDomain then
      commonDenominator m == lcm map(denom, parts m)
    else
      commonDenominator m == reduce("*",map(denom, parts m),1)$List(R)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package ICDEN InnerCommonDenominator>>
<<package CDEN CommonDenominator>>
<<package UPCDEN UnivariatePolynomialCommonDenominator>>
<<package MCDEN MatrixCommonDenominator>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}