\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra catdef.spad} \author{James Davenport, Lalo Gonzalez-Vega} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{category ABELGRP AbelianGroup} <>= )abbrev category ABELGRP AbelianGroup ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ The class of abelian groups, i.e. additive monoids where ++ each element has an additive inverse. ++ ++ Axioms: ++ \spad{-(-x) = x} ++ \spad{x+(-x) = 0} -- following domain must be compiled with subsumption disabled AbelianGroup(): Category == CancellationAbelianMonoid with --operations "-": % -> % ++ -x is the additive inverse of x. "-": (%,%) -> % ++ x-y is the difference of x and y ++ i.e. \spad{x + (-y)}. -- subsumes the partial subtraction from previous "*": (Integer,%) -> % ++ n*x is the product of x by the integer n. add (x:% - y:%):% == x+(-y) subtractIfCan(x:%, y:%):Union(%, "failed") == (x-y) :: Union(%,"failed") n:NonNegativeInteger * x:% == (n::Integer) * x import RepeatedDoubling(%) if not (% has Ring) then n:Integer * x:% == zero? n => 0 n>0 => double(n pretend PositiveInteger,x) double((-n) pretend PositiveInteger,-x) @ \section{ABELGRP.lsp BOOTSTRAP} {\bf ABELGRP} depends on a chain of files. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf ABELGRP} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf ABELGRP.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFPARAMETER |AbelianGroup;AL| 'NIL) (DEFUN |AbelianGroup| () (LET (#:G1388) (COND (|AbelianGroup;AL|) (T (SETQ |AbelianGroup;AL| (|AbelianGroup;|)))))) (DEFUN |AbelianGroup;| () (PROG (#0=#:G1386) (RETURN (PROG1 (LETT #0# (|Join| (|CancellationAbelianMonoid|) (|mkCategory| '|domain| '(((- ($ $)) T) ((- ($ $ $)) T) ((* ($ (|Integer|) $)) T)) NIL '((|Integer|)) NIL)) |AbelianGroup|) (SETELT #0# 0 '(|AbelianGroup|)))))) (MAKEPROP '|AbelianGroup| 'NILADIC T) @ \section{ABELGRP-.lsp BOOTSTRAP} {\bf ABELGRP-} depends on a chain of files. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf ABELGRP-} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf ABELGRP-.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFUN |ABELGRP-;-;3S;1| (|x| |y| $) (SPADCALL |x| (SPADCALL |y| (QREFELT $ 7)) (QREFELT $ 8))) (DEFUN |ABELGRP-;subtractIfCan;2SU;2| (|x| |y| $) (CONS 0 (SPADCALL |x| |y| (QREFELT $ 10)))) (DEFUN |ABELGRP-;*;Nni2S;3| (|n| |x| $) (SPADCALL |n| |x| (QREFELT $ 14))) (DEFUN |ABELGRP-;*;I2S;4| (|n| |x| $) (COND ((ZEROP |n|) (|spadConstant| $ 17)) ((< 0 |n|) (SPADCALL |n| |x| (QREFELT $ 20))) ('T (SPADCALL (- |n|) (SPADCALL |x| (QREFELT $ 7)) (QREFELT $ 20))))) (DEFUN |AbelianGroup&| (|#1|) (PROG (|dv$1| |dv$| $ |pv$|) (RETURN (PROGN (LETT |dv$1| (|devaluate| |#1|) . #0=(|AbelianGroup&|)) (LETT |dv$| (LIST '|AbelianGroup&| |dv$1|) . #0#) (LETT $ (GETREFV 22) . #0#) (QSETREFV $ 0 |dv$|) (QSETREFV $ 3 (LETT |pv$| (|buildPredVector| 0 0 NIL) . #0#)) (|stuffDomainSlots| $) (QSETREFV $ 6 |#1|) (COND ((|HasCategory| |#1| '(|Ring|))) ('T (QSETREFV $ 21 (CONS (|dispatchFunction| |ABELGRP-;*;I2S;4|) $)))) $)))) (MAKEPROP '|AbelianGroup&| '|infovec| (LIST '#(NIL NIL NIL NIL NIL NIL (|local| |#1|) (0 . -) (5 . +) |ABELGRP-;-;3S;1| (11 . -) (|Union| $ '"failed") |ABELGRP-;subtractIfCan;2SU;2| (|Integer|) (17 . *) (|NonNegativeInteger|) |ABELGRP-;*;Nni2S;3| (23 . |Zero|) (|PositiveInteger|) (|RepeatedDoubling| 6) (27 . |double|) (33 . *)) '#(|subtractIfCan| 39 - 45 * 51) 'NIL (CONS (|makeByteWordVec2| 1 'NIL) (CONS '#() (CONS '#() (|makeByteWordVec2| 21 '(1 6 0 0 7 2 6 0 0 0 8 2 6 0 0 0 10 2 6 0 13 0 14 0 6 0 17 2 19 6 18 6 20 2 0 0 13 0 21 2 0 11 0 0 12 2 0 0 0 0 9 2 0 0 13 0 21 2 0 0 15 0 16))))) '|lookupComplete|)) @ \section{category ABELMON AbelianMonoid} <>= )abbrev category ABELMON AbelianMonoid ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ The class of multiplicative monoids, i.e. semigroups with an ++ additive identity element. ++ ++ Axioms: ++ \spad{leftIdentity("+":(%,%)->%,0)}\tab{30}\spad{ 0+x=x } ++ \spad{rightIdentity("+":(%,%)->%,0)}\tab{30}\spad{ x+0=x } -- following domain must be compiled with subsumption disabled -- define SourceLevelSubset to be EQUAL AbelianMonoid(): Category == AbelianSemiGroup with --operations 0: constant -> % ++ 0 is the additive identity element. sample: constant -> % ++ sample yields a value of type % zero?: % -> Boolean ++ zero?(x) tests if x is equal to 0. "*": (NonNegativeInteger,%) -> % ++ n * x is left-multiplication by a non negative integer add import RepeatedDoubling(%) zero? x == x = 0 n:PositiveInteger * x:% == (n::NonNegativeInteger) * x sample() == 0 if not (% has Ring) then n:NonNegativeInteger * x:% == zero? n => 0 double(n pretend PositiveInteger,x) @ \section{ABELMON.lsp BOOTSTRAP} {\bf ABELMON} which needs {\bf ABELSG} which needs {\bf SETCAT} which needs {\bf SINT} which needs {\bf UFD} which needs {\bf GCDDOM} which needs {\bf COMRING} which needs {\bf RING} which needs {\bf RNG} which needs {\bf ABELGRP} which needs {\bf CABMON} which needs {\bf ABELMON}. We break this chain with {\bf ABELMON.lsp} which we cache here. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf ABELMON} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf ABELMON.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFPARAMETER |AbelianMonoid;AL| 'NIL) (DEFUN |AbelianMonoid| () (LET (#:G1388) (COND (|AbelianMonoid;AL|) (T (SETQ |AbelianMonoid;AL| (|AbelianMonoid;|)))))) (DEFUN |AbelianMonoid;| () (PROG (#0=#:G1386) (RETURN (PROG1 (LETT #0# (|Join| (|AbelianSemiGroup|) (|mkCategory| '|domain| '(((|Zero| ($) |constant|) T) ((|sample| ($) |constant|) T) ((|zero?| ((|Boolean|) $)) T) ((* ($ (|NonNegativeInteger|) $)) T)) NIL '((|NonNegativeInteger|) (|Boolean|)) NIL)) |AbelianMonoid|) (SETELT #0# 0 '(|AbelianMonoid|)))))) (MAKEPROP '|AbelianMonoid| 'NILADIC T) @ \section{ABELMON-.lsp BOOTSTRAP} {\bf ABELMON-} which needs {\bf ABELSG} which needs {\bf SETCAT} which needs {\bf SINT} which needs {\bf UFD} which needs {\bf GCDDOM} which needs {\bf COMRING} which needs {\bf RING} which needs {\bf RNG} which needs {\bf ABELGRP} which needs {\bf CABMON} which needs {\bf ABELMON-}. We break this chain with {\bf ABELMON-.lsp} which we cache here. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf ABELMON-} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf ABELMON-.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFUN |ABELMON-;zero?;SB;1| (|x| $) (SPADCALL |x| (|spadConstant| $ 7) (QREFELT $ 9))) (DEFUN |ABELMON-;*;Pi2S;2| (|n| |x| $) (SPADCALL |n| |x| (QREFELT $ 12))) (DEFUN |ABELMON-;sample;S;3| ($) (|spadConstant| $ 7)) (DEFUN |ABELMON-;*;Nni2S;4| (|n| |x| $) (COND ((ZEROP |n|) (|spadConstant| $ 7)) ('T (SPADCALL |n| |x| (QREFELT $ 17))))) (DEFUN |AbelianMonoid&| (|#1|) (PROG (|dv$1| |dv$| $ |pv$|) (RETURN (PROGN (LETT |dv$1| (|devaluate| |#1|) . #0=(|AbelianMonoid&|)) (LETT |dv$| (LIST '|AbelianMonoid&| |dv$1|) . #0#) (LETT $ (GETREFV 19) . #0#) (QSETREFV $ 0 |dv$|) (QSETREFV $ 3 (LETT |pv$| (|buildPredVector| 0 0 NIL) . #0#)) (|stuffDomainSlots| $) (QSETREFV $ 6 |#1|) (COND ((|HasCategory| |#1| '(|Ring|))) ('T (QSETREFV $ 18 (CONS (|dispatchFunction| |ABELMON-;*;Nni2S;4|) $)))) $)))) (MAKEPROP '|AbelianMonoid&| '|infovec| (LIST '#(NIL NIL NIL NIL NIL NIL (|local| |#1|) (0 . |Zero|) (|Boolean|) (4 . =) |ABELMON-;zero?;SB;1| (|NonNegativeInteger|) (10 . *) (|PositiveInteger|) |ABELMON-;*;Pi2S;2| |ABELMON-;sample;S;3| (|RepeatedDoubling| 6) (16 . |double|) (22 . *)) '#(|zero?| 28 |sample| 33 * 37) 'NIL (CONS (|makeByteWordVec2| 1 'NIL) (CONS '#() (CONS '#() (|makeByteWordVec2| 18 '(0 6 0 7 2 6 8 0 0 9 2 6 0 11 0 12 2 16 6 13 6 17 2 0 0 11 0 18 1 0 8 0 10 0 0 0 15 2 0 0 11 0 18 2 0 0 13 0 14))))) '|lookupComplete|)) @ \section{category ABELSG AbelianSemiGroup} <>= )abbrev category ABELSG AbelianSemiGroup ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ the class of all additive (commutative) semigroups, i.e. ++ a set with a commutative and associative operation \spadop{+}. ++ ++ Axioms: ++ \spad{associative("+":(%,%)->%)}\tab{30}\spad{ (x+y)+z = x+(y+z) } ++ \spad{commutative("+":(%,%)->%)}\tab{30}\spad{ x+y = y+x } AbelianSemiGroup(): Category == SetCategory with --operations "+": (%,%) -> % ++ x+y computes the sum of x and y. "*": (PositiveInteger,%) -> % ++ n*x computes the left-multiplication of x by the positive integer n. ++ This is equivalent to adding x to itself n times. add import RepeatedDoubling(%) if not (% has Ring) then n:PositiveInteger * x:% == double(n,x) @ \section{ABELSG.lsp BOOTSTRAP} {\bf ABELSG} needs {\bf SETCAT} which needs {\bf SINT} which needs {\bf UFD} which needs {\bf GCDDOM} which needs {\bf COMRING} which needs {\bf RING} which needs {\bf RNG} which needs {\bf ABELGRP} which needs {\bf CABMON} which needs {\bf ABELMON} which needs {\bf ABELSG}. We break this chain with {\bf ABELSG.lsp} which we cache here. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf ABELSG} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf ABELSG.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFPARAMETER |AbelianSemiGroup;AL| 'NIL) (DEFUN |AbelianSemiGroup| () (LET (#:G1387) (COND (|AbelianSemiGroup;AL|) (T (SETQ |AbelianSemiGroup;AL| (|AbelianSemiGroup;|)))))) (DEFUN |AbelianSemiGroup;| () (PROG (#0=#:G1385) (RETURN (PROG1 (LETT #0# (|Join| (|SetCategory|) (|mkCategory| '|domain| '(((+ ($ $ $)) T) ((* ($ (|PositiveInteger|) $)) T)) NIL '((|PositiveInteger|)) NIL)) |AbelianSemiGroup|) (SETELT #0# 0 '(|AbelianSemiGroup|)))))) (MAKEPROP '|AbelianSemiGroup| 'NILADIC T) @ \section{ABELSG-.lsp BOOTSTRAP} {\bf ABELSG-} needs {\bf SETCAT} which needs {\bf SINT} which needs {\bf UFD} which needs {\bf GCDDOM} which needs {\bf COMRING} which needs {\bf RING} which needs {\bf RNG} which needs {\bf ABELGRP} which needs {\bf CABMON} which needs {\bf ABELMON} which needs {\bf ABELSG-}. We break this chain with {\bf ABELSG-.lsp} which we cache here. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf ABELSG-} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf ABELSG-.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFUN |ABELSG-;*;Pi2S;1| (|n| |x| $) (SPADCALL |n| |x| (QREFELT $ 9))) (DEFUN |AbelianSemiGroup&| (|#1|) (PROG (|dv$1| |dv$| $ |pv$|) (RETURN (PROGN (LETT |dv$1| (|devaluate| |#1|) . #0=(|AbelianSemiGroup&|)) (LETT |dv$| (LIST '|AbelianSemiGroup&| |dv$1|) . #0#) (LETT $ (GETREFV 11) . #0#) (QSETREFV $ 0 |dv$|) (QSETREFV $ 3 (LETT |pv$| (|buildPredVector| 0 0 NIL) . #0#)) (|stuffDomainSlots| $) (QSETREFV $ 6 |#1|) (COND ((|HasCategory| |#1| '(|Ring|))) ('T (QSETREFV $ 10 (CONS (|dispatchFunction| |ABELSG-;*;Pi2S;1|) $)))) $)))) (MAKEPROP '|AbelianSemiGroup&| '|infovec| (LIST '#(NIL NIL NIL NIL NIL NIL (|local| |#1|) (|PositiveInteger|) (|RepeatedDoubling| 6) (0 . |double|) (6 . *)) '#(* 12) 'NIL (CONS (|makeByteWordVec2| 1 'NIL) (CONS '#() (CONS '#() (|makeByteWordVec2| 10 '(2 8 6 7 6 9 2 0 0 7 0 10 2 0 0 7 0 10))))) '|lookupComplete|)) @ \section{category ALGEBRA Algebra} <>= )abbrev category ALGEBRA Algebra ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ The category of associative algebras (modules which are themselves rings). ++ ++ Axioms: ++ \spad{(b+c)::% = (b::%) + (c::%)} ++ \spad{(b*c)::% = (b::%) * (c::%)} ++ \spad{(1::R)::% = 1::%} ++ \spad{b*x = (b::%)*x} ++ \spad{r*(a*b) = (r*a)*b = a*(r*b)} Algebra(R:CommutativeRing): Category == Join(Ring, Module R) with --operations coerce: R -> % ++ coerce(r) maps the ring element r to a member of the algebra. add coerce(x:R):% == x * 1$% @ \section{category BASTYPE BasicType} <>= )abbrev category BASTYPE BasicType --% BasicType ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ \spadtype{BasicType} is the basic category for describing a collection ++ of elements with \spadop{=} (equality). BasicType(): Category == with "=": (%,%) -> Boolean ++ x=y tests if x and y are equal. "~=": (%,%) -> Boolean ++ x~=y tests if x and y are not equal. add _~_=(x:%,y:%) : Boolean == not(x=y) @ \section{category BMODULE BiModule} <>= )abbrev category BMODULE BiModule ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A \spadtype{BiModule} is both a left and right module with respect ++ to potentially different rings. ++ ++ Axiom: ++ \spad{ r*(x*s) = (r*x)*s } BiModule(R:Ring,S:Ring):Category == Join(LeftModule(R),RightModule(S)) with leftUnitary ++ \spad{1 * x = x} rightUnitary ++ \spad{x * 1 = x} @ \section{category CABMON CancellationAbelianMonoid} <>= )abbrev category CABMON CancellationAbelianMonoid ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: Davenport & Trager I ++ Description: ++ This is an \spadtype{AbelianMonoid} with the cancellation property, i.e. ++ \spad{ a+b = a+c => b=c }. ++ This is formalised by the partial subtraction operator, ++ which satisfies the axioms listed below: ++ ++ Axioms: ++ \spad{c = a+b <=> c-b = a} CancellationAbelianMonoid(): Category == AbelianMonoid with --operations subtractIfCan: (%,%) -> Union(%,"failed") ++ subtractIfCan(x, y) returns an element z such that \spad{z+y=x} ++ or "failed" if no such element exists. @ \section{CABMON.lsp BOOTSTRAP} {\bf CABMON} which needs {\bf ABELMON} which needs {\bf ABELSG} which needs {\bf SETCAT} which needs {\bf SINT} which needs {\bf UFD} which needs {\bf GCDDOM} which needs {\bf COMRING} which needs {\bf RING} which needs {\bf RNG} which needs {\bf ABELGRP} which needs {\bf CABMON}. We break this chain with {\bf CABMON.lsp} which we cache here. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf CABMON} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf CABMON.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFPARAMETER |CancellationAbelianMonoid;AL| 'NIL) (DEFUN |CancellationAbelianMonoid| () (LET (#:G1387) (COND (|CancellationAbelianMonoid;AL|) (T (SETQ |CancellationAbelianMonoid;AL| (|CancellationAbelianMonoid;|)))))) (DEFUN |CancellationAbelianMonoid;| () (PROG (#0=#:G1385) (RETURN (PROG1 (LETT #0# (|Join| (|AbelianMonoid|) (|mkCategory| '|domain| '(((|subtractIfCan| ((|Union| $ "failed") $ $)) T)) NIL 'NIL NIL)) |CancellationAbelianMonoid|) (SETELT #0# 0 '(|CancellationAbelianMonoid|)))))) (MAKEPROP '|CancellationAbelianMonoid| 'NILADIC T) @ \section{category CHARNZ CharacteristicNonZero} <>= )abbrev category CHARNZ CharacteristicNonZero ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ Rings of Characteristic Non Zero CharacteristicNonZero():Category == Ring with charthRoot: % -> Union(%,"failed") ++ charthRoot(x) returns the pth root of x ++ where p is the characteristic of the ring. @ \section{category CHARZ CharacteristicZero} <>= )abbrev category CHARZ CharacteristicZero ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ Rings of Characteristic Zero. CharacteristicZero():Category == Ring @ \section{category COMRING CommutativeRing} <>= )abbrev category COMRING CommutativeRing ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ The category of commutative rings with unity, i.e. rings where ++ \spadop{*} is commutative, and which have a multiplicative identity. ++ element. --CommutativeRing():Category == Join(Ring,BiModule(%:Ring,%:Ring)) with CommutativeRing():Category == Join(Ring,BiModule(%,%)) with commutative("*") ++ multiplication is commutative. @ \section{COMRING.lsp BOOTSTRAP} {\bf COMRING} depends on itself. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf COMRING} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf COMRING.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFPARAMETER |CommutativeRing;AL| 'NIL) (DEFUN |CommutativeRing| () (LET (#:G1387) (COND (|CommutativeRing;AL|) (T (SETQ |CommutativeRing;AL| (|CommutativeRing;|)))))) (DEFUN |CommutativeRing;| () (PROG (#0=#:G1385) (RETURN (PROG1 (LETT #0# (|Join| (|Ring|) (|BiModule| '$ '$) (|mkCategory| '|package| NIL '(((|commutative| "*") T)) 'NIL NIL)) |CommutativeRing|) (SETELT #0# 0 '(|CommutativeRing|)))))) (MAKEPROP '|CommutativeRing| 'NILADIC T) @ \section{category DIFRING DifferentialRing} <>= )abbrev category DIFRING DifferentialRing ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ An ordinary differential ring, that is, a ring with an operation ++ \spadfun{differentiate}. ++ ++ Axioms: ++ \spad{differentiate(x+y) = differentiate(x)+differentiate(y)} ++ \spad{differentiate(x*y) = x*differentiate(y) + differentiate(x)*y} DifferentialRing(): Category == Ring with differentiate: % -> % ++ differentiate(x) returns the derivative of x. ++ This function is a simple differential operator ++ where no variable needs to be specified. D: % -> % ++ D(x) returns the derivative of x. ++ This function is a simple differential operator ++ where no variable needs to be specified. differentiate: (%, NonNegativeInteger) -> % ++ differentiate(x, n) returns the n-th derivative of x. D: (%, NonNegativeInteger) -> % ++ D(x, n) returns the n-th derivative of x. add D r == differentiate r differentiate(r, n) == for i in 1..n repeat r := differentiate r r D(r,n) == differentiate(r,n) @ \section{DIFRING.lsp BOOTSTRAP} {\bf DIFRING} needs {\bf INT} which needs {\bf DIFRING}. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf DIFRING} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf DIFRING.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFPARAMETER |DifferentialRing;AL| 'NIL) (DEFUN |DifferentialRing| () (LET (#:G1387) (COND (|DifferentialRing;AL|) (T (SETQ |DifferentialRing;AL| (|DifferentialRing;|)))))) (DEFUN |DifferentialRing;| () (PROG (#0=#:G1385) (RETURN (PROG1 (LETT #0# (|Join| (|Ring|) (|mkCategory| '|domain| '(((|differentiate| ($ $)) T) ((D ($ $)) T) ((|differentiate| ($ $ (|NonNegativeInteger|))) T) ((D ($ $ (|NonNegativeInteger|))) T)) NIL '((|NonNegativeInteger|)) NIL)) |DifferentialRing|) (SETELT #0# 0 '(|DifferentialRing|)))))) (MAKEPROP '|DifferentialRing| 'NILADIC T) @ \section{DIFRING-.lsp BOOTSTRAP} {\bf DIFRING-} needs {\bf DIFRING}. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf DIFRING-} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf DIFRING-.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFUN |DIFRING-;D;2S;1| (|r| $) (SPADCALL |r| (QREFELT $ 7))) (DEFUN |DIFRING-;differentiate;SNniS;2| (|r| |n| $) (PROG (|i|) (RETURN (SEQ (SEQ (LETT |i| 1 |DIFRING-;differentiate;SNniS;2|) G190 (COND ((QSGREATERP |i| |n|) (GO G191))) (SEQ (EXIT (LETT |r| (SPADCALL |r| (QREFELT $ 7)) |DIFRING-;differentiate;SNniS;2|))) (LETT |i| (QSADD1 |i|) |DIFRING-;differentiate;SNniS;2|) (GO G190) G191 (EXIT NIL)) (EXIT |r|))))) (DEFUN |DIFRING-;D;SNniS;3| (|r| |n| $) (SPADCALL |r| |n| (QREFELT $ 11))) (DEFUN |DifferentialRing&| (|#1|) (PROG (|dv$1| |dv$| $ |pv$|) (RETURN (PROGN (LETT |dv$1| (|devaluate| |#1|) . #0=(|DifferentialRing&|)) (LETT |dv$| (LIST '|DifferentialRing&| |dv$1|) . #0#) (LETT $ (GETREFV 13) . #0#) (QSETREFV $ 0 |dv$|) (QSETREFV $ 3 (LETT |pv$| (|buildPredVector| 0 0 NIL) . #0#)) (|stuffDomainSlots| $) (QSETREFV $ 6 |#1|) $)))) (MAKEPROP '|DifferentialRing&| '|infovec| (LIST '#(NIL NIL NIL NIL NIL NIL (|local| |#1|) (0 . |differentiate|) |DIFRING-;D;2S;1| (|NonNegativeInteger|) |DIFRING-;differentiate;SNniS;2| (5 . |differentiate|) |DIFRING-;D;SNniS;3|) '#(|differentiate| 11 D 17) 'NIL (CONS (|makeByteWordVec2| 1 'NIL) (CONS '#() (CONS '#() (|makeByteWordVec2| 12 '(1 6 0 0 7 2 6 0 0 9 11 2 0 0 0 9 10 2 0 0 0 9 12 1 0 0 0 8))))) '|lookupComplete|)) @ \section{category DIFEXT DifferentialExtension} <>= )abbrev category DIFEXT DifferentialExtension ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ Differential extensions of a ring R. ++ Given a differentiation on R, extend it to a differentiation on %. DifferentialExtension(R:Ring): Category == Ring with --operations differentiate: (%, R -> R) -> % ++ differentiate(x, deriv) differentiates x extending ++ the derivation deriv on R. differentiate: (%, R -> R, NonNegativeInteger) -> % ++ differentiate(x, deriv, n) differentiate x n times ++ using a derivation which extends deriv on R. D: (%, R -> R) -> % ++ D(x, deriv) differentiates x extending ++ the derivation deriv on R. D: (%, R -> R, NonNegativeInteger) -> % ++ D(x, deriv, n) differentiate x n times ++ using a derivation which extends deriv on R. if R has DifferentialRing then DifferentialRing if R has PartialDifferentialRing(Symbol) then PartialDifferentialRing(Symbol) add differentiate(x:%, derivation: R -> R, n:NonNegativeInteger):% == for i in 1..n repeat x := differentiate(x, derivation) x D(x:%, derivation: R -> R) == differentiate(x, derivation) D(x:%, derivation: R -> R, n:NonNegativeInteger) == differentiate(x, derivation, n) if R has DifferentialRing then differentiate x == differentiate(x, differentiate$R) if R has PartialDifferentialRing Symbol then differentiate(x:%, v:Symbol):% == differentiate(x, differentiate(#1, v)$R) @ \section{category DIVRING DivisionRing} <>= )abbrev category DIVRING DivisionRing ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A division ring (sometimes called a skew field), ++ i.e. a not necessarily commutative ring where ++ all non-zero elements have multiplicative inverses. DivisionRing(): Category == Join(EntireRing, Algebra Fraction Integer) with "**": (%,Integer) -> % ++ x**n returns x raised to the integer power n. "^" : (%,Integer) -> % ++ x^n returns x raised to the integer power n. inv : % -> % ++ inv x returns the multiplicative inverse of x. ++ Error: if x is 0. -- Q-algebra is a lie, should be conditional on characteristic 0, -- but knownInfo cannot handle the following commented -- if % has CharacteristicZero then Algebra Fraction Integer add n: Integer x: % _^(x:%, n:Integer):% == x ** n import RepeatedSquaring(%) x ** n: Integer == zero? n => 1 zero? x => n<0 => error "division by zero" x n<0 => expt(inv x,(-n) pretend PositiveInteger) expt(x,n pretend PositiveInteger) -- if % has CharacteristicZero() then q:Fraction(Integer) * x:% == numer(q) * inv(denom(q)::%) * x @ \section{DIVRING.lsp BOOTSTRAP} {\bf DIVRING} depends on {\bf QFCAT} which eventually depends on {\bf DIVRING}. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf DIVRING} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf DIVRING.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFPARAMETER |DivisionRing;AL| 'NIL) (DEFUN |DivisionRing| () (LET (#:G1390) (COND (|DivisionRing;AL|) (T (SETQ |DivisionRing;AL| (|DivisionRing;|)))))) (DEFUN |DivisionRing;| () (PROG (#0=#:G1388) (RETURN (PROG1 (LETT #0# (|sublisV| (PAIR '(#1=#:G1387) (LIST '(|Fraction| (|Integer|)))) (|Join| (|EntireRing|) (|Algebra| '#1#) (|mkCategory| '|domain| '(((** ($ $ (|Integer|))) T) ((^ ($ $ (|Integer|))) T) ((|inv| ($ $)) T)) NIL '((|Integer|)) NIL))) |DivisionRing|) (SETELT #0# 0 '(|DivisionRing|)))))) (MAKEPROP '|DivisionRing| 'NILADIC T) @ \section{DIVRING-.lsp BOOTSTRAP} {\bf DIVRING-} depends on {\bf DIVRING}. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf DIVRING-} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf DIVRING-.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFUN |DIVRING-;^;SIS;1| (|x| |n| $) (SPADCALL |x| |n| (QREFELT $ 8))) (DEFUN |DIVRING-;**;SIS;2| (|x| |n| $) (COND ((ZEROP |n|) (|spadConstant| $ 10)) ((SPADCALL |x| (QREFELT $ 12)) (COND ((< |n| 0) (|error| "division by zero")) ('T |x|))) ((< |n| 0) (SPADCALL (SPADCALL |x| (QREFELT $ 14)) (- |n|) (QREFELT $ 17))) ('T (SPADCALL |x| |n| (QREFELT $ 17))))) (DEFUN |DIVRING-;*;F2S;3| (|q| |x| $) (SPADCALL (SPADCALL (SPADCALL |q| (QREFELT $ 20)) (SPADCALL (SPADCALL (SPADCALL |q| (QREFELT $ 21)) (QREFELT $ 22)) (QREFELT $ 14)) (QREFELT $ 23)) |x| (QREFELT $ 24))) (DEFUN |DivisionRing&| (|#1|) (PROG (|dv$1| |dv$| $ |pv$|) (RETURN (PROGN (LETT |dv$1| (|devaluate| |#1|) . #0=(|DivisionRing&|)) (LETT |dv$| (LIST '|DivisionRing&| |dv$1|) . #0#) (LETT $ (GETREFV 27) . #0#) (QSETREFV $ 0 |dv$|) (QSETREFV $ 3 (LETT |pv$| (|buildPredVector| 0 0 NIL) . #0#)) (|stuffDomainSlots| $) (QSETREFV $ 6 |#1|) $)))) (MAKEPROP '|DivisionRing&| '|infovec| (LIST '#(NIL NIL NIL NIL NIL NIL (|local| |#1|) (|Integer|) (0 . **) |DIVRING-;^;SIS;1| (6 . |One|) (|Boolean|) (10 . |zero?|) (15 . |Zero|) (19 . |inv|) (|PositiveInteger|) (|RepeatedSquaring| 6) (24 . |expt|) |DIVRING-;**;SIS;2| (|Fraction| 7) (30 . |numer|) (35 . |denom|) (40 . |coerce|) (45 . *) (51 . *) |DIVRING-;*;F2S;3| (|NonNegativeInteger|)) '#(^ 57 ** 63 * 69) 'NIL (CONS (|makeByteWordVec2| 1 'NIL) (CONS '#() (CONS '#() (|makeByteWordVec2| 25 '(2 6 0 0 7 8 0 6 0 10 1 6 11 0 12 0 6 0 13 1 6 0 0 14 2 16 6 6 15 17 1 19 7 0 20 1 19 7 0 21 1 6 0 7 22 2 6 0 7 0 23 2 6 0 0 0 24 2 0 0 0 7 9 2 0 0 0 7 18 2 0 0 19 0 25))))) '|lookupComplete|)) @ \section{category ENTIRER EntireRing} <>= )abbrev category ENTIRER EntireRing ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ Entire Rings (non-commutative Integral Domains), i.e. a ring ++ not necessarily commutative which has no zero divisors. ++ ++ Axioms: ++ \spad{ab=0 => a=0 or b=0} -- known as noZeroDivisors ++ \spad{not(1=0)} --EntireRing():Category == Join(Ring,BiModule(%:Ring,%:Ring)) with EntireRing():Category == Join(Ring,BiModule(%,%)) with noZeroDivisors ++ if a product is zero then one of the factors ++ must be zero. @ \section{ENTIRER.lsp BOOTSTRAP} {\bf ENTIRER} depends on itself. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf ENTIRER} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf ENTIRER.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFPARAMETER |EntireRing;AL| 'NIL) (DEFUN |EntireRing| () (LET (#:G1387) (COND (|EntireRing;AL|) (T (SETQ |EntireRing;AL| (|EntireRing;|)))))) (DEFUN |EntireRing;| () (PROG (#0=#:G1385) (RETURN (PROG1 (LETT #0# (|Join| (|Ring|) (|BiModule| '$ '$) (|mkCategory| '|package| NIL '((|noZeroDivisors| T)) 'NIL NIL)) |EntireRing|) (SETELT #0# 0 '(|EntireRing|)))))) (MAKEPROP '|EntireRing| 'NILADIC T) @ \section{category EUCDOM EuclideanDomain} <>= )abbrev category EUCDOM EuclideanDomain ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A constructive euclidean domain, i.e. one can divide producing ++ a quotient and a remainder where the remainder is either zero ++ or is smaller (\spadfun{euclideanSize}) than the divisor. ++ ++ Conditional attributes: ++ multiplicativeValuation\tab{25}\spad{Size(a*b)=Size(a)*Size(b)} ++ additiveValuation\tab{25}\spad{Size(a*b)=Size(a)+Size(b)} EuclideanDomain(): Category == PrincipalIdealDomain with --operations sizeLess?: (%,%) -> Boolean ++ sizeLess?(x,y) tests whether x is strictly ++ smaller than y with respect to the \spadfunFrom{euclideanSize}{EuclideanDomain}. euclideanSize: % -> NonNegativeInteger ++ euclideanSize(x) returns the euclidean size of the element x. ++ Error: if x is zero. divide: (%,%) -> Record(quotient:%,remainder:%) ++ divide(x,y) divides x by y producing a record containing a ++ \spad{quotient} and \spad{remainder}, ++ where the remainder is smaller (see \spadfunFrom{sizeLess?}{EuclideanDomain}) ++ than the divisor y. "quo" : (%,%) -> % ++ x quo y is the same as \spad{divide(x,y).quotient}. ++ See \spadfunFrom{divide}{EuclideanDomain}. "rem": (%,%) -> % ++ x rem y is the same as \spad{divide(x,y).remainder}. ++ See \spadfunFrom{divide}{EuclideanDomain}. extendedEuclidean: (%,%) -> Record(coef1:%,coef2:%,generator:%) -- formerly called princIdeal ++ extendedEuclidean(x,y) returns a record rec where ++ \spad{rec.coef1*x+rec.coef2*y = rec.generator} and ++ rec.generator is a gcd of x and y. ++ The gcd is unique only ++ up to associates if \spadatt{canonicalUnitNormal} is not asserted. ++ \spadfun{principalIdeal} provides a version of this operation ++ which accepts an arbitrary length list of arguments. extendedEuclidean: (%,%,%) -> Union(Record(coef1:%,coef2:%),"failed") -- formerly called expressIdealElt ++ extendedEuclidean(x,y,z) either returns a record rec ++ where \spad{rec.coef1*x+rec.coef2*y=z} or returns "failed" ++ if z cannot be expressed as a linear combination of x and y. multiEuclidean: (List %,%) -> Union(List %,"failed") ++ multiEuclidean([f1,...,fn],z) returns a list of coefficients ++ \spad{[a1, ..., an]} such that ++ \spad{ z / prod fi = sum aj/fj}. ++ If no such list of coefficients exists, "failed" is returned. add -- declarations x,y,z: % l: List % -- definitions sizeLess?(x,y) == zero? y => false zero? x => true euclideanSize(x) "failed" qr:=divide(x,y) zero?(qr.remainder) => qr.quotient "failed" gcd(x,y) == --Euclidean Algorithm x:=unitCanonical x y:=unitCanonical y while not zero? y repeat (x,y):= (y,x rem y) y:=unitCanonical y -- this doesn't affect the -- correctness of Euclid's algorithm, -- but -- a) may improve performance -- b) ensures gcd(x,y)=gcd(y,x) -- if canonicalUnitNormal x IdealElt ==> Record(coef1:%,coef2:%,generator:%) unitNormalizeIdealElt(s:IdealElt):IdealElt == (u,c,a):=unitNormal(s.generator) -- one? a => s (a = 1) => s [a*s.coef1,a*s.coef2,c]$IdealElt extendedEuclidean(x,y) == --Extended Euclidean Algorithm s1:=unitNormalizeIdealElt([1$%,0$%,x]$IdealElt) s2:=unitNormalizeIdealElt([0$%,1$%,y]$IdealElt) zero? y => s1 zero? x => s2 while not zero?(s2.generator) repeat qr:= divide(s1.generator, s2.generator) s3:=[s1.coef1 - qr.quotient * s2.coef1, s1.coef2 - qr.quotient * s2.coef2, qr.remainder]$IdealElt s1:=s2 s2:=unitNormalizeIdealElt s3 if not(zero?(s1.coef1)) and not sizeLess?(s1.coef1,y) then qr:= divide(s1.coef1,y) s1.coef1:= qr.remainder s1.coef2:= s1.coef2 + qr.quotient * x s1 := unitNormalizeIdealElt s1 s1 TwoCoefs ==> Record(coef1:%,coef2:%) extendedEuclidean(x,y,z) == zero? z => [0,0]$TwoCoefs s:= extendedEuclidean(x,y) (w:= z exquo s.generator) case "failed" => "failed" zero? y => [s.coef1 * w, s.coef2 * w]$TwoCoefs qr:= divide((s.coef1 * w), y) [qr.remainder, s.coef2 * w + qr.quotient * x]$TwoCoefs principalIdeal l == l = [] => error "empty list passed to principalIdeal" rest l = [] => uca:=unitNormal(first l) [[uca.unit],uca.canonical] rest rest l = [] => u:= extendedEuclidean(first l,second l) [[u.coef1, u.coef2], u.generator] v:=principalIdeal rest l u:= extendedEuclidean(first l,v.generator) [[u.coef1,:[u.coef2*vv for vv in v.coef]],u.generator] expressIdealMember(l,z) == z = 0 => [0 for v in l] pid := principalIdeal l (q := z exquo (pid.generator)) case "failed" => "failed" [q*v for v in pid.coef] multiEuclidean(l,z) == n := #l zero? n => error "empty list passed to multiEuclidean" n = 1 => [z] l1 := copy l l2 := split!(l1, n quo 2) u:= extendedEuclidean(*/l1, */l2, z) u case "failed" => "failed" v1 := multiEuclidean(l1,u.coef2) v1 case "failed" => "failed" v2 := multiEuclidean(l2,u.coef1) v2 case "failed" => "failed" concat(v1,v2) @ \section{EUCDOM.lsp BOOTSTRAP} {\bf EUCDOM} depends on {\bf INT} which depends on {\bf EUCDOM}. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf EUCDOM} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf EUCDOM.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. \subsection{The Lisp Implementation} \subsubsection{EUCDOM;VersionCheck} This implements the bootstrap code for {\bf EuclideanDomain}. The call to {\bf VERSIONCHECK} is a legacy check to ensure that we did not load algebra code from a previous system version (which would not run due to major surgical changes in the system) without recompiling. <>= (|/VERSIONCHECK| 2) @ \subsubsection{The Domain Cache Variable} We create a variable which is formed by concatenating the string ``{\bf ;AL}'' to the domain name forming, in this case, ``{\bf EuclideanDomain;AL}''. The variable has the initial value at load time of a list of one element, {\bf NIL}. This list is a data structure that will be modified to hold an executable function. This function is created the first time the domain is used which it replaces the {\bf NIL}. <>= (DEFPARAMETER |EuclideanDomain;AL| (QUOTE NIL)) @ \subsubsection{The Domain Function} When you call a domain the code is pretty simple at the top level. This code will check to see if this domain has ever been used. It does this by checking the value of the cached domain variable (which is the domain name {\bf EuclideanDomain} concatenated with the string ``{\bf ;AL}'' to form the cache variable name which is {\bf EuclideanDomain;AL}). If this value is NIL we have never executed this function before. If it is not NIL we have executed this function before and we need only return the cached function which was stored in the cache variable. If this is the first time this function is called, the cache variable is NIL and we execute the other branch of the conditional. This calls a function which \begin{enumerate} \item creates a procedure \item returns the procedure as a value. \end{enumerate} This procedure replaces the cached variable {\bf EuclideanDomain;AL} value so it will be non-NIL the second time this domain is used. Thus the work of building the domain only happens once. If this function has never been called before we call the <>= (DEFUN |EuclideanDomain| NIL (LET (#:G83585) (COND (|EuclideanDomain;AL|) (T (SETQ |EuclideanDomain;AL| (|EuclideanDomain;|)))))) @ \subsubsection{The First Call Domain Function} <>= (DEFUN |EuclideanDomain;| NIL (PROG (#1=#:G83583) (RETURN (PROG1 (LETT #1# (|Join| (|PrincipalIdealDomain|) (|mkCategory| (QUOTE |domain|) (QUOTE ( ((|sizeLess?| ((|Boolean|) |$| |$|)) T) ((|euclideanSize| ((|NonNegativeInteger|) |$|)) T) ((|divide| ((|Record| (|:| |quotient| |$|) (|:| |remainder| |$|)) |$| |$|)) T) ((|quo| (|$| |$| |$|)) T) ((|rem| (|$| |$| |$|)) T) ((|extendedEuclidean| ((|Record| (|:| |coef1| |$|) (|:| |coef2| |$|) (|:| |generator| |$|)) |$| |$|)) T) ((|extendedEuclidean| ((|Union| (|Record| (|:| |coef1| |$|) (|:| |coef2| |$|)) "failed") |$| |$| |$|)) T) ((|multiEuclidean| ((|Union| (|List| |$|) "failed") (|List| |$|) |$|)) T))) NIL (QUOTE ((|List| |$|) (|NonNegativeInteger|) (|Boolean|))) NIL)) |EuclideanDomain|) (SETELT #1# 0 (QUOTE (|EuclideanDomain|))))))) @ \subsubsection{EUCDOM;MAKEPROP} <>= (MAKEPROP (QUOTE |EuclideanDomain|) (QUOTE NILADIC) T) @ <>= <> <> <> <> <> @ \section{EUCDOM-.lsp BOOTSTRAP} {\bf EUCDOM-} depends on {\bf EUCDOM}. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf EUCDOM-} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf EUCDOM-.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. <>= (/VERSIONCHECK 2) (DEFUN |EUCDOM-;sizeLess?;2SB;1| (|x| |y| $) (COND ((SPADCALL |y| (|getShellEntry| $ 8)) 'NIL) ((SPADCALL |x| (|getShellEntry| $ 8)) 'T) ('T (< (SPADCALL |x| (|getShellEntry| $ 10)) (SPADCALL |y| (|getShellEntry| $ 10)))))) (DEFUN |EUCDOM-;quo;3S;2| (|x| |y| $) (QCAR (SPADCALL |x| |y| (|getShellEntry| $ 13)))) (DEFUN |EUCDOM-;rem;3S;3| (|x| |y| $) (QCDR (SPADCALL |x| |y| (|getShellEntry| $ 13)))) (DEFUN |EUCDOM-;exquo;2SU;4| (|x| |y| $) (PROG (|qr|) (RETURN (SEQ (COND ((SPADCALL |y| (|getShellEntry| $ 8)) (CONS 1 "failed")) ('T (SEQ (LETT |qr| (SPADCALL |x| |y| (|getShellEntry| $ 13)) |EUCDOM-;exquo;2SU;4|) (EXIT (COND ((SPADCALL (QCDR |qr|) (|getShellEntry| $ 8)) (CONS 0 (QCAR |qr|))) ('T (CONS 1 "failed"))))))))))) (DEFUN |EUCDOM-;gcd;3S;5| (|x| |y| $) (PROG (|#G13| |#G14|) (RETURN (SEQ (LETT |x| (SPADCALL |x| (|getShellEntry| $ 18)) |EUCDOM-;gcd;3S;5|) (LETT |y| (SPADCALL |y| (|getShellEntry| $ 18)) |EUCDOM-;gcd;3S;5|) (SEQ G190 (COND ((NULL (SPADCALL (SPADCALL |y| (|getShellEntry| $ 8)) (|getShellEntry| $ 19))) (GO G191))) (SEQ (PROGN (LETT |#G13| |y| |EUCDOM-;gcd;3S;5|) (LETT |#G14| (SPADCALL |x| |y| (|getShellEntry| $ 20)) |EUCDOM-;gcd;3S;5|) (LETT |x| |#G13| |EUCDOM-;gcd;3S;5|) (LETT |y| |#G14| |EUCDOM-;gcd;3S;5|)) (EXIT (LETT |y| (SPADCALL |y| (|getShellEntry| $ 18)) |EUCDOM-;gcd;3S;5|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT |x|))))) (DEFUN |EUCDOM-;unitNormalizeIdealElt| (|s| $) (PROG (|#G16| |u| |c| |a|) (RETURN (SEQ (PROGN (LETT |#G16| (SPADCALL (QVELT |s| 2) (|getShellEntry| $ 23)) |EUCDOM-;unitNormalizeIdealElt|) (LETT |u| (QVELT |#G16| 0) |EUCDOM-;unitNormalizeIdealElt|) (LETT |c| (QVELT |#G16| 1) |EUCDOM-;unitNormalizeIdealElt|) (LETT |a| (QVELT |#G16| 2) |EUCDOM-;unitNormalizeIdealElt|) |#G16|) (EXIT (COND ((SPADCALL |a| (|spadConstant| $ 24) (|getShellEntry| $ 25)) |s|) ('T (VECTOR (SPADCALL |a| (QVELT |s| 0) (|getShellEntry| $ 26)) (SPADCALL |a| (QVELT |s| 1) (|getShellEntry| $ 26)) |c|)))))))) (DEFUN |EUCDOM-;extendedEuclidean;2SR;7| (|x| |y| $) (PROG (|s3| |s2| |qr| |s1|) (RETURN (SEQ (LETT |s1| (|EUCDOM-;unitNormalizeIdealElt| (VECTOR (|spadConstant| $ 24) (|spadConstant| $ 27) |x|) $) |EUCDOM-;extendedEuclidean;2SR;7|) (LETT |s2| (|EUCDOM-;unitNormalizeIdealElt| (VECTOR (|spadConstant| $ 27) (|spadConstant| $ 24) |y|) $) |EUCDOM-;extendedEuclidean;2SR;7|) (EXIT (COND ((SPADCALL |y| (|getShellEntry| $ 8)) |s1|) ((SPADCALL |x| (|getShellEntry| $ 8)) |s2|) ('T (SEQ (SEQ G190 (COND ((NULL (SPADCALL (SPADCALL (QVELT |s2| 2) (|getShellEntry| $ 8)) (|getShellEntry| $ 19))) (GO G191))) (SEQ (LETT |qr| (SPADCALL (QVELT |s1| 2) (QVELT |s2| 2) (|getShellEntry| $ 13)) |EUCDOM-;extendedEuclidean;2SR;7|) (LETT |s3| (VECTOR (SPADCALL (QVELT |s1| 0) (SPADCALL (QCAR |qr|) (QVELT |s2| 0) (|getShellEntry| $ 26)) (|getShellEntry| $ 28)) (SPADCALL (QVELT |s1| 1) (SPADCALL (QCAR |qr|) (QVELT |s2| 1) (|getShellEntry| $ 26)) (|getShellEntry| $ 28)) (QCDR |qr|)) |EUCDOM-;extendedEuclidean;2SR;7|) (LETT |s1| |s2| |EUCDOM-;extendedEuclidean;2SR;7|) (EXIT (LETT |s2| (|EUCDOM-;unitNormalizeIdealElt| |s3| $) |EUCDOM-;extendedEuclidean;2SR;7|))) NIL (GO G190) G191 (EXIT NIL)) (COND ((NULL (SPADCALL (QVELT |s1| 0) (|getShellEntry| $ 8))) (COND ((NULL (SPADCALL (QVELT |s1| 0) |y| (|getShellEntry| $ 29))) (SEQ (LETT |qr| (SPADCALL (QVELT |s1| 0) |y| (|getShellEntry| $ 13)) |EUCDOM-;extendedEuclidean;2SR;7|) (QSETVELT |s1| 0 (QCDR |qr|)) (QSETVELT |s1| 1 (SPADCALL (QVELT |s1| 1) (SPADCALL (QCAR |qr|) |x| (|getShellEntry| $ 26)) (|getShellEntry| $ 30))) (EXIT (LETT |s1| (|EUCDOM-;unitNormalizeIdealElt| |s1| $) |EUCDOM-;extendedEuclidean;2SR;7|))))))) (EXIT |s1|))))))))) (DEFUN |EUCDOM-;extendedEuclidean;3SU;8| (|x| |y| |z| $) (PROG (|s| |w| |qr|) (RETURN (SEQ (COND ((SPADCALL |z| (|getShellEntry| $ 8)) (CONS 0 (CONS (|spadConstant| $ 27) (|spadConstant| $ 27)))) ('T (SEQ (LETT |s| (SPADCALL |x| |y| (|getShellEntry| $ 33)) |EUCDOM-;extendedEuclidean;3SU;8|) (LETT |w| (SPADCALL |z| (QVELT |s| 2) (|getShellEntry| $ 34)) |EUCDOM-;extendedEuclidean;3SU;8|) (EXIT (COND ((QEQCAR |w| 1) (CONS 1 "failed")) ((SPADCALL |y| (|getShellEntry| $ 8)) (CONS 0 (CONS (SPADCALL (QVELT |s| 0) (QCDR |w|) (|getShellEntry| $ 26)) (SPADCALL (QVELT |s| 1) (QCDR |w|) (|getShellEntry| $ 26))))) ('T (SEQ (LETT |qr| (SPADCALL (SPADCALL (QVELT |s| 0) (QCDR |w|) (|getShellEntry| $ 26)) |y| (|getShellEntry| $ 13)) |EUCDOM-;extendedEuclidean;3SU;8|) (EXIT (CONS 0 (CONS (QCDR |qr|) (SPADCALL (SPADCALL (QVELT |s| 1) (QCDR |w|) (|getShellEntry| $ 26)) (SPADCALL (QCAR |qr|) |x| (|getShellEntry| $ 26)) (|getShellEntry| $ 30)))))))))))))))) (DEFUN |EUCDOM-;principalIdeal;LR;9| (|l| $) (PROG (|uca| |v| |u| #0=#:G1478 |vv| #1=#:G1479) (RETURN (SEQ (COND ((SPADCALL |l| NIL (|getShellEntry| $ 39)) (|error| "empty list passed to principalIdeal")) ((SPADCALL (CDR |l|) NIL (|getShellEntry| $ 39)) (SEQ (LETT |uca| (SPADCALL (|SPADfirst| |l|) (|getShellEntry| $ 23)) |EUCDOM-;principalIdeal;LR;9|) (EXIT (CONS (LIST (QVELT |uca| 0)) (QVELT |uca| 1))))) ((SPADCALL (CDR (CDR |l|)) NIL (|getShellEntry| $ 39)) (SEQ (LETT |u| (SPADCALL (|SPADfirst| |l|) (SPADCALL |l| (|getShellEntry| $ 40)) (|getShellEntry| $ 33)) |EUCDOM-;principalIdeal;LR;9|) (EXIT (CONS (LIST (QVELT |u| 0) (QVELT |u| 1)) (QVELT |u| 2))))) ('T (SEQ (LETT |v| (SPADCALL (CDR |l|) (|getShellEntry| $ 43)) |EUCDOM-;principalIdeal;LR;9|) (LETT |u| (SPADCALL (|SPADfirst| |l|) (QCDR |v|) (|getShellEntry| $ 33)) |EUCDOM-;principalIdeal;LR;9|) (EXIT (CONS (CONS (QVELT |u| 0) (PROGN (LETT #0# NIL |EUCDOM-;principalIdeal;LR;9|) (SEQ (LETT |vv| NIL |EUCDOM-;principalIdeal;LR;9|) (LETT #1# (QCAR |v|) |EUCDOM-;principalIdeal;LR;9|) G190 (COND ((OR (ATOM #1#) (PROGN (LETT |vv| (CAR #1#) |EUCDOM-;principalIdeal;LR;9|) NIL)) (GO G191))) (SEQ (EXIT (LETT #0# (CONS (SPADCALL (QVELT |u| 1) |vv| (|getShellEntry| $ 26)) #0#) |EUCDOM-;principalIdeal;LR;9|))) (LETT #1# (CDR #1#) |EUCDOM-;principalIdeal;LR;9|) (GO G190) G191 (EXIT (NREVERSE0 #0#))))) (QVELT |u| 2)))))))))) (DEFUN |EUCDOM-;expressIdealMember;LSU;10| (|l| |z| $) (PROG (#0=#:G1494 #1=#:G1495 |pid| |q| #2=#:G1496 |v| #3=#:G1497) (RETURN (SEQ (COND ((SPADCALL |z| (|spadConstant| $ 27) (|getShellEntry| $ 25)) (CONS 0 (PROGN (LETT #0# NIL |EUCDOM-;expressIdealMember;LSU;10|) (SEQ (LETT |v| NIL |EUCDOM-;expressIdealMember;LSU;10|) (LETT #1# |l| |EUCDOM-;expressIdealMember;LSU;10|) G190 (COND ((OR (ATOM #1#) (PROGN (LETT |v| (CAR #1#) |EUCDOM-;expressIdealMember;LSU;10|) NIL)) (GO G191))) (SEQ (EXIT (LETT #0# (CONS (|spadConstant| $ 27) #0#) |EUCDOM-;expressIdealMember;LSU;10|))) (LETT #1# (CDR #1#) |EUCDOM-;expressIdealMember;LSU;10|) (GO G190) G191 (EXIT (NREVERSE0 #0#)))))) ('T (SEQ (LETT |pid| (SPADCALL |l| (|getShellEntry| $ 43)) |EUCDOM-;expressIdealMember;LSU;10|) (LETT |q| (SPADCALL |z| (QCDR |pid|) (|getShellEntry| $ 34)) |EUCDOM-;expressIdealMember;LSU;10|) (EXIT (COND ((QEQCAR |q| 1) (CONS 1 "failed")) ('T (CONS 0 (PROGN (LETT #2# NIL |EUCDOM-;expressIdealMember;LSU;10|) (SEQ (LETT |v| NIL |EUCDOM-;expressIdealMember;LSU;10|) (LETT #3# (QCAR |pid|) |EUCDOM-;expressIdealMember;LSU;10|) G190 (COND ((OR (ATOM #3#) (PROGN (LETT |v| (CAR #3#) |EUCDOM-;expressIdealMember;LSU;10|) NIL)) (GO G191))) (SEQ (EXIT (LETT #2# (CONS (SPADCALL (QCDR |q|) |v| (|getShellEntry| $ 26)) #2#) |EUCDOM-;expressIdealMember;LSU;10|))) (LETT #3# (CDR #3#) |EUCDOM-;expressIdealMember;LSU;10|) (GO G190) G191 (EXIT (NREVERSE0 #2#))))))))))))))) (DEFUN |EUCDOM-;multiEuclidean;LSU;11| (|l| |z| $) (PROG (|n| |l1| |l2| #0=#:G1392 #1=#:G1516 #2=#:G1503 #3=#:G1501 #4=#:G1502 #5=#:G1393 #6=#:G1517 #7=#:G1506 #8=#:G1504 #9=#:G1505 |u| |v1| |v2|) (RETURN (SEQ (LETT |n| (LENGTH |l|) |EUCDOM-;multiEuclidean;LSU;11|) (EXIT (COND ((ZEROP |n|) (|error| "empty list passed to multiEuclidean")) ((EQL |n| 1) (CONS 0 (LIST |z|))) ('T (SEQ (LETT |l1| (SPADCALL |l| (|getShellEntry| $ 47)) |EUCDOM-;multiEuclidean;LSU;11|) (LETT |l2| (SPADCALL |l1| (QUOTIENT2 |n| 2) (|getShellEntry| $ 49)) |EUCDOM-;multiEuclidean;LSU;11|) (LETT |u| (SPADCALL (PROGN (LETT #4# NIL |EUCDOM-;multiEuclidean;LSU;11|) (SEQ (LETT #0# NIL |EUCDOM-;multiEuclidean;LSU;11|) (LETT #1# |l1| |EUCDOM-;multiEuclidean;LSU;11|) G190 (COND ((OR (ATOM #1#) (PROGN (LETT #0# (CAR #1#) |EUCDOM-;multiEuclidean;LSU;11|) NIL)) (GO G191))) (SEQ (EXIT (PROGN (LETT #2# #0# |EUCDOM-;multiEuclidean;LSU;11|) (COND (#4# (LETT #3# (SPADCALL #3# #2# (|getShellEntry| $ 26)) |EUCDOM-;multiEuclidean;LSU;11|)) ('T (PROGN (LETT #3# #2# |EUCDOM-;multiEuclidean;LSU;11|) (LETT #4# 'T |EUCDOM-;multiEuclidean;LSU;11|))))))) (LETT #1# (CDR #1#) |EUCDOM-;multiEuclidean;LSU;11|) (GO G190) G191 (EXIT NIL)) (COND (#4# #3#) ('T (|spadConstant| $ 24)))) (PROGN (LETT #9# NIL |EUCDOM-;multiEuclidean;LSU;11|) (SEQ (LETT #5# NIL |EUCDOM-;multiEuclidean;LSU;11|) (LETT #6# |l2| |EUCDOM-;multiEuclidean;LSU;11|) G190 (COND ((OR (ATOM #6#) (PROGN (LETT #5# (CAR #6#) |EUCDOM-;multiEuclidean;LSU;11|) NIL)) (GO G191))) (SEQ (EXIT (PROGN (LETT #7# #5# |EUCDOM-;multiEuclidean;LSU;11|) (COND (#9# (LETT #8# (SPADCALL #8# #7# (|getShellEntry| $ 26)) |EUCDOM-;multiEuclidean;LSU;11|)) ('T (PROGN (LETT #8# #7# |EUCDOM-;multiEuclidean;LSU;11|) (LETT #9# 'T |EUCDOM-;multiEuclidean;LSU;11|))))))) (LETT #6# (CDR #6#) |EUCDOM-;multiEuclidean;LSU;11|) (GO G190) G191 (EXIT NIL)) (COND (#9# #8#) ('T (|spadConstant| $ 24)))) |z| (|getShellEntry| $ 50)) |EUCDOM-;multiEuclidean;LSU;11|) (EXIT (COND ((QEQCAR |u| 1) (CONS 1 "failed")) ('T (SEQ (LETT |v1| (SPADCALL |l1| (QCDR (QCDR |u|)) (|getShellEntry| $ 51)) |EUCDOM-;multiEuclidean;LSU;11|) (EXIT (COND ((QEQCAR |v1| 1) (CONS 1 "failed")) ('T (SEQ (LETT |v2| (SPADCALL |l2| (QCAR (QCDR |u|)) (|getShellEntry| $ 51)) |EUCDOM-;multiEuclidean;LSU;11|) (EXIT (COND ((QEQCAR |v2| 1) (CONS 1 "failed")) ('T (CONS 0 (SPADCALL (QCDR |v1|) (QCDR |v2|) (|getShellEntry| $ 52)))))))))))))))))))))) (DEFUN |EuclideanDomain&| (|#1|) (PROG (|dv$1| |dv$| $ |pv$|) (RETURN (PROGN (LETT |dv$1| (|devaluate| |#1|) . #0=(|EuclideanDomain&|)) (LETT |dv$| (LIST '|EuclideanDomain&| |dv$1|) . #0#) (LETT $ (|newShell| 54) . #0#) (|setShellEntry| $ 0 |dv$|) (|setShellEntry| $ 3 (LETT |pv$| (|buildPredVector| 0 0 NIL) . #0#)) (|stuffDomainSlots| $) (|setShellEntry| $ 6 |#1|) $)))) (MAKEPROP '|EuclideanDomain&| '|infovec| (LIST '#(NIL NIL NIL NIL NIL NIL (|local| |#1|) (|Boolean|) (0 . |zero?|) (|NonNegativeInteger|) (5 . |euclideanSize|) |EUCDOM-;sizeLess?;2SB;1| (|Record| (|:| |quotient| $) (|:| |remainder| $)) (10 . |divide|) |EUCDOM-;quo;3S;2| |EUCDOM-;rem;3S;3| (|Union| $ '"failed") |EUCDOM-;exquo;2SU;4| (16 . |unitCanonical|) (21 . |not|) (26 . |rem|) |EUCDOM-;gcd;3S;5| (|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) (32 . |unitNormal|) (37 . |One|) (41 . =) (47 . *) (53 . |Zero|) (57 . -) (63 . |sizeLess?|) (69 . +) (|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) |EUCDOM-;extendedEuclidean;2SR;7| (75 . |extendedEuclidean|) (81 . |exquo|) (|Record| (|:| |coef1| $) (|:| |coef2| $)) (|Union| 35 '"failed") |EUCDOM-;extendedEuclidean;3SU;8| (|List| 6) (87 . =) (93 . |second|) (|List| $) (|Record| (|:| |coef| 41) (|:| |generator| $)) (98 . |principalIdeal|) |EUCDOM-;principalIdeal;LR;9| (|Union| 41 '"failed") |EUCDOM-;expressIdealMember;LSU;10| (103 . |copy|) (|Integer|) (108 . |split!|) (114 . |extendedEuclidean|) (121 . |multiEuclidean|) (127 . |concat|) |EUCDOM-;multiEuclidean;LSU;11|) '#(|sizeLess?| 133 |rem| 139 |quo| 145 |principalIdeal| 151 |multiEuclidean| 156 |gcd| 162 |extendedEuclidean| 168 |exquo| 181 |expressIdealMember| 187) 'NIL (CONS (|makeByteWordVec2| 1 'NIL) (CONS '#() (CONS '#() (|makeByteWordVec2| 53 '(1 6 7 0 8 1 6 9 0 10 2 6 12 0 0 13 1 6 0 0 18 1 7 0 0 19 2 6 0 0 0 20 1 6 22 0 23 0 6 0 24 2 6 7 0 0 25 2 6 0 0 0 26 0 6 0 27 2 6 0 0 0 28 2 6 7 0 0 29 2 6 0 0 0 30 2 6 31 0 0 33 2 6 16 0 0 34 2 38 7 0 0 39 1 38 6 0 40 1 6 42 41 43 1 38 0 0 47 2 38 0 0 48 49 3 6 36 0 0 0 50 2 6 45 41 0 51 2 38 0 0 0 52 2 0 7 0 0 11 2 0 0 0 0 15 2 0 0 0 0 14 1 0 42 41 44 2 0 45 41 0 53 2 0 0 0 0 21 3 0 36 0 0 0 37 2 0 31 0 0 32 2 0 16 0 0 17 2 0 45 41 0 46))))) '|lookupComplete|)) @ \section{category FIELD Field} <>= )abbrev category FIELD Field ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ The category of commutative fields, i.e. commutative rings ++ where all non-zero elements have multiplicative inverses. ++ The \spadfun{factor} operation while trivial is useful to have defined. ++ ++ Axioms: ++ \spad{a*(b/a) = b} ++ \spad{inv(a) = 1/a} Field(): Category == Join(EuclideanDomain,UniqueFactorizationDomain, DivisionRing) with --operations "/": (%,%) -> % ++ x/y divides the element x by the element y. ++ Error: if y is 0. canonicalUnitNormal ++ either 0 or 1. canonicalsClosed ++ since \spad{0*0=0}, \spad{1*1=1} add --declarations x,y: % n: Integer -- definitions UCA ==> Record(unit:%,canonical:%,associate:%) unitNormal(x) == if zero? x then [1$%,0$%,1$%]$UCA else [x,1$%,inv(x)]$UCA unitCanonical(x) == if zero? x then x else 1 associates?(x,y) == if zero? x then zero? y else not(zero? y) inv x ==((u:=recip x) case "failed" => error "not invertible"; u) x exquo y == (y=0 => "failed"; x / y) gcd(x,y) == 1 euclideanSize(x) == 0 prime? x == false squareFree x == x::Factored(%) factor x == x::Factored(%) x / y == (zero? y => error "catdef: division by zero"; x * inv(y)) divide(x,y) == [x / y,0] @ \section{category FINITE Finite} <>= )abbrev category FINITE Finite ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ The category of domains composed of a finite set of elements. ++ We include the functions \spadfun{lookup} and \spadfun{index} to give a bijection ++ between the finite set and an initial segment of positive integers. ++ ++ Axioms: ++ \spad{lookup(index(n)) = n} ++ \spad{index(lookup(s)) = s} Finite(): Category == SetCategory with --operations size: () -> NonNegativeInteger ++ size() returns the number of elements in the set. index: PositiveInteger -> % ++ index(i) takes a positive integer i less than or equal ++ to \spad{size()} and ++ returns the \spad{i}-th element of the set. This operation establishs a bijection ++ between the elements of the finite set and \spad{1..size()}. lookup: % -> PositiveInteger ++ lookup(x) returns a positive integer such that ++ \spad{x = index lookup x}. random: () -> % ++ random() returns a random element from the set. @ \section{category FLINEXP FullyLinearlyExplicitRingOver} <>= )abbrev category FLINEXP FullyLinearlyExplicitRingOver ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ S is \spadtype{FullyLinearlyExplicitRingOver R} means that S is a ++ \spadtype{LinearlyExplicitRingOver R} and, in addition, if R is a ++ \spadtype{LinearlyExplicitRingOver Integer}, then so is S FullyLinearlyExplicitRingOver(R:Ring):Category == LinearlyExplicitRingOver R with if (R has LinearlyExplicitRingOver Integer) then LinearlyExplicitRingOver Integer add if not(R is Integer) then if (R has LinearlyExplicitRingOver Integer) then reducedSystem(m:Matrix %):Matrix(Integer) == reducedSystem(reducedSystem(m)@Matrix(R)) reducedSystem(m:Matrix %, v:Vector %): Record(mat:Matrix(Integer), vec:Vector(Integer)) == rec := reducedSystem(m, v)@Record(mat:Matrix R, vec:Vector R) reducedSystem(rec.mat, rec.vec) @ \section{category GCDDOM GcdDomain} <>= )abbrev category GCDDOM GcdDomain ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: Davenport & Trager 1 ++ Description: ++ This category describes domains where ++ \spadfun{gcd} can be computed but where there is no guarantee ++ of the existence of \spadfun{factor} operation for factorisation into irreducibles. ++ However, if such a \spadfun{factor} operation exist, factorization will be ++ unique up to order and units. GcdDomain(): Category == IntegralDomain with --operations gcd: (%,%) -> % ++ gcd(x,y) returns the greatest common divisor of x and y. -- gcd(x,y) = gcd(y,x) in the presence of canonicalUnitNormal, -- but not necessarily elsewhere gcd: List(%) -> % ++ gcd(l) returns the common gcd of the elements in the list l. lcm: (%,%) -> % ++ lcm(x,y) returns the least common multiple of x and y. -- lcm(x,y) = lcm(y,x) in the presence of canonicalUnitNormal, -- but not necessarily elsewhere lcm: List(%) -> % ++ lcm(l) returns the least common multiple of the elements of the list l. gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % ++ gcdPolynomial(p,q) returns the greatest common divisor (gcd) of ++ univariate polynomials over the domain add lcm(x: %,y: %) == y = 0 => 0 x = 0 => 0 LCM : Union(%,"failed") := y exquo gcd(x,y) LCM case % => x * LCM error "bad gcd in lcm computation" lcm(l:List %) == reduce(lcm,l,1,0) gcd(l:List %) == reduce(gcd,l,0,1) SUP ==> SparseUnivariatePolynomial gcdPolynomial(p1,p2) == zero? p1 => unitCanonical p2 zero? p2 => unitCanonical p1 c1:= content(p1); c2:= content(p2) p1:= (p1 exquo c1)::SUP % p2:= (p2 exquo c2)::SUP % if (e1:=minimumDegree p1) > 0 then p1:=(p1 exquo monomial(1,e1))::SUP % if (e2:=minimumDegree p2) > 0 then p2:=(p2 exquo monomial(1,e2))::SUP % e1:=min(e1,e2); c1:=gcd(c1,c2) p1:= degree p1 = 0 or degree p2 = 0 => monomial(c1,0) p:= subResultantGcd(p1,p2) degree p = 0 => monomial(c1,0) c2:= gcd(leadingCoefficient p1,leadingCoefficient p2) unitCanonical(c1 * primitivePart(((c2*p) exquo leadingCoefficient p)::SUP %)) zero? e1 => p1 monomial(1,e1)*p1 @ \section{GCDDOM.lsp BOOTSTRAP} {\bf GCDDOM} needs {\bf COMRING} which needs {\bf RING} which needs {\bf RNG} which needs {\bf ABELGRP} which needs {\bf CABMON} which needs {\bf ABELMON} which needs {\bf ABELSG} which needs {\bf SETCAT} which needs {\bf SINT} which needs {\bf UFD} which needs {\bf GCDDOM}. We break this chain with {\bf GCDDOM.lsp} which we cache here. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf GCDDOM} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf GCDDOM.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFPARAMETER |GcdDomain;AL| 'NIL) (DEFUN |GcdDomain| () (LET (#:G1393) (COND (|GcdDomain;AL|) (T (SETQ |GcdDomain;AL| (|GcdDomain;|)))))) (DEFUN |GcdDomain;| () (PROG (#0=#:G1391) (RETURN (PROG1 (LETT #0# (|Join| (|IntegralDomain|) (|mkCategory| '|domain| '(((|gcd| ($ $ $)) T) ((|gcd| ($ (|List| $))) T) ((|lcm| ($ $ $)) T) ((|lcm| ($ (|List| $))) T) ((|gcdPolynomial| ((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $))) T)) NIL '((|SparseUnivariatePolynomial| $) (|List| $)) NIL)) |GcdDomain|) (SETELT #0# 0 '(|GcdDomain|)))))) (MAKEPROP '|GcdDomain| 'NILADIC T) @ \section{GCDDOM-.lsp BOOTSTRAP} {\bf GCDDOM-} depends on {\bf GCDDOM}. We break this chain with {\bf GCDDOM-.lsp} which we cache here. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf GCDDOM-} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf GCDDOM-.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFUN |GCDDOM-;lcm;3S;1| (|x| |y| $) (PROG (LCM) (RETURN (SEQ (COND ((OR (SPADCALL |y| (|spadConstant| $ 7) (QREFELT $ 9)) (SPADCALL |x| (|spadConstant| $ 7) (QREFELT $ 9))) (|spadConstant| $ 7)) ('T (SEQ (LETT LCM (SPADCALL |y| (SPADCALL |x| |y| (QREFELT $ 10)) (QREFELT $ 12)) |GCDDOM-;lcm;3S;1|) (EXIT (COND ((QEQCAR LCM 0) (SPADCALL |x| (QCDR LCM) (QREFELT $ 13))) ('T (|error| "bad gcd in lcm computation"))))))))))) (DEFUN |GCDDOM-;lcm;LS;2| (|l| $) (SPADCALL (ELT $ 15) |l| (|spadConstant| $ 16) (|spadConstant| $ 7) (QREFELT $ 19))) (DEFUN |GCDDOM-;gcd;LS;3| (|l| $) (SPADCALL (ELT $ 10) |l| (|spadConstant| $ 7) (|spadConstant| $ 16) (QREFELT $ 19))) (DEFUN |GCDDOM-;gcdPolynomial;3Sup;4| (|p1| |p2| $) (PROG (|e2| |e1| |c1| |p| |c2| #0=#:G1406) (RETURN (SEQ (COND ((SPADCALL |p1| (QREFELT $ 24)) (SPADCALL |p2| (QREFELT $ 25))) ((SPADCALL |p2| (QREFELT $ 24)) (SPADCALL |p1| (QREFELT $ 25))) ('T (SEQ (LETT |c1| (SPADCALL |p1| (QREFELT $ 26)) |GCDDOM-;gcdPolynomial;3Sup;4|) (LETT |c2| (SPADCALL |p2| (QREFELT $ 26)) |GCDDOM-;gcdPolynomial;3Sup;4|) (LETT |p1| (PROG2 (LETT #0# (SPADCALL |p1| |c1| (QREFELT $ 27)) |GCDDOM-;gcdPolynomial;3Sup;4|) (QCDR #0#) (|check-union| (QEQCAR #0# 0) (|SparseUnivariatePolynomial| (QREFELT $ 6)) #0#)) |GCDDOM-;gcdPolynomial;3Sup;4|) (LETT |p2| (PROG2 (LETT #0# (SPADCALL |p2| |c2| (QREFELT $ 27)) |GCDDOM-;gcdPolynomial;3Sup;4|) (QCDR #0#) (|check-union| (QEQCAR #0# 0) (|SparseUnivariatePolynomial| (QREFELT $ 6)) #0#)) |GCDDOM-;gcdPolynomial;3Sup;4|) (SEQ (LETT |e1| (SPADCALL |p1| (QREFELT $ 29)) |GCDDOM-;gcdPolynomial;3Sup;4|) (EXIT (COND ((< 0 |e1|) (LETT |p1| (PROG2 (LETT #0# (SPADCALL |p1| (SPADCALL (|spadConstant| $ 16) |e1| (QREFELT $ 32)) (QREFELT $ 33)) |GCDDOM-;gcdPolynomial;3Sup;4|) (QCDR #0#) (|check-union| (QEQCAR #0# 0) (|SparseUnivariatePolynomial| (QREFELT $ 6)) #0#)) |GCDDOM-;gcdPolynomial;3Sup;4|))))) (SEQ (LETT |e2| (SPADCALL |p2| (QREFELT $ 29)) |GCDDOM-;gcdPolynomial;3Sup;4|) (EXIT (COND ((< 0 |e2|) (LETT |p2| (PROG2 (LETT #0# (SPADCALL |p2| (SPADCALL (|spadConstant| $ 16) |e2| (QREFELT $ 32)) (QREFELT $ 33)) |GCDDOM-;gcdPolynomial;3Sup;4|) (QCDR #0#) (|check-union| (QEQCAR #0# 0) (|SparseUnivariatePolynomial| (QREFELT $ 6)) #0#)) |GCDDOM-;gcdPolynomial;3Sup;4|))))) (LETT |e1| (MIN |e1| |e2|) |GCDDOM-;gcdPolynomial;3Sup;4|) (LETT |c1| (SPADCALL |c1| |c2| (QREFELT $ 10)) |GCDDOM-;gcdPolynomial;3Sup;4|) (LETT |p1| (COND ((OR (EQL (SPADCALL |p1| (QREFELT $ 34)) 0) (EQL (SPADCALL |p2| (QREFELT $ 34)) 0)) (SPADCALL |c1| 0 (QREFELT $ 32))) ('T (SEQ (LETT |p| (SPADCALL |p1| |p2| (QREFELT $ 35)) |GCDDOM-;gcdPolynomial;3Sup;4|) (EXIT (COND ((EQL (SPADCALL |p| (QREFELT $ 34)) 0) (SPADCALL |c1| 0 (QREFELT $ 32))) ('T (SEQ (LETT |c2| (SPADCALL (SPADCALL |p1| (QREFELT $ 36)) (SPADCALL |p2| (QREFELT $ 36)) (QREFELT $ 10)) |GCDDOM-;gcdPolynomial;3Sup;4|) (EXIT (SPADCALL (SPADCALL |c1| (SPADCALL (PROG2 (LETT #0# (SPADCALL (SPADCALL |c2| |p| (QREFELT $ 37)) (SPADCALL |p| (QREFELT $ 36)) (QREFELT $ 27)) |GCDDOM-;gcdPolynomial;3Sup;4|) (QCDR #0#) (|check-union| (QEQCAR #0# 0) (|SparseUnivariatePolynomial| (QREFELT $ 6)) #0#)) (QREFELT $ 38)) (QREFELT $ 37)) (QREFELT $ 25)))))))))) |GCDDOM-;gcdPolynomial;3Sup;4|) (EXIT (COND ((ZEROP |e1|) |p1|) ('T (SPADCALL (SPADCALL (|spadConstant| $ 16) |e1| (QREFELT $ 32)) |p1| (QREFELT $ 39)))))))))))) (DEFUN |GcdDomain&| (|#1|) (PROG (|dv$1| |dv$| $ |pv$|) (RETURN (PROGN (LETT |dv$1| (|devaluate| |#1|) . #0=(|GcdDomain&|)) (LETT |dv$| (LIST '|GcdDomain&| |dv$1|) . #0#) (LETT $ (GETREFV 42) . #0#) (QSETREFV $ 0 |dv$|) (QSETREFV $ 3 (LETT |pv$| (|buildPredVector| 0 0 NIL) . #0#)) (|stuffDomainSlots| $) (QSETREFV $ 6 |#1|) $)))) (MAKEPROP '|GcdDomain&| '|infovec| (LIST '#(NIL NIL NIL NIL NIL NIL (|local| |#1|) (0 . |Zero|) (|Boolean|) (4 . =) (10 . |gcd|) (|Union| $ '"failed") (16 . |exquo|) (22 . *) |GCDDOM-;lcm;3S;1| (28 . |lcm|) (34 . |One|) (|Mapping| 6 6 6) (|List| 6) (38 . |reduce|) (|List| $) |GCDDOM-;lcm;LS;2| |GCDDOM-;gcd;LS;3| (|SparseUnivariatePolynomial| 6) (46 . |zero?|) (51 . |unitCanonical|) (56 . |content|) (61 . |exquo|) (|NonNegativeInteger|) (67 . |minimumDegree|) (72 . |Zero|) (76 . |One|) (80 . |monomial|) (86 . |exquo|) (92 . |degree|) (97 . |subResultantGcd|) (103 . |leadingCoefficient|) (108 . *) (114 . |primitivePart|) (119 . *) (|SparseUnivariatePolynomial| $) |GCDDOM-;gcdPolynomial;3Sup;4|) '#(|lcm| 125 |gcdPolynomial| 136 |gcd| 142) 'NIL (CONS (|makeByteWordVec2| 1 'NIL) (CONS '#() (CONS '#() (|makeByteWordVec2| 41 '(0 6 0 7 2 6 8 0 0 9 2 6 0 0 0 10 2 6 11 0 0 12 2 6 0 0 0 13 2 6 0 0 0 15 0 6 0 16 4 18 6 17 0 6 6 19 1 23 8 0 24 1 23 0 0 25 1 23 6 0 26 2 23 11 0 6 27 1 23 28 0 29 0 23 0 30 0 23 0 31 2 23 0 6 28 32 2 23 11 0 0 33 1 23 28 0 34 2 23 0 0 0 35 1 23 6 0 36 2 23 0 6 0 37 1 23 0 0 38 2 23 0 0 0 39 1 0 0 20 21 2 0 0 0 0 14 2 0 40 40 40 41 1 0 0 20 22))))) '|lookupComplete|)) @ \section{category GROUP Group} <>= )abbrev category GROUP Group ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ The class of multiplicative groups, i.e. monoids with ++ multiplicative inverses. ++ ++ Axioms: ++ \spad{leftInverse("*":(%,%)->%,inv)}\tab{30}\spad{ inv(x)*x = 1 } ++ \spad{rightInverse("*":(%,%)->%,inv)}\tab{30}\spad{ x*inv(x) = 1 } Group(): Category == Monoid with --operations inv: % -> % ++ inv(x) returns the inverse of x. "/": (%,%) -> % ++ x/y is the same as x times the inverse of y. "**": (%,Integer) -> % ++ x**n returns x raised to the integer power n. "^": (%,Integer) -> % ++ x^n returns x raised to the integer power n. unitsKnown ++ unitsKnown asserts that recip only returns ++ "failed" for non-units. conjugate: (%,%) -> % ++ conjugate(p,q) computes \spad{inv(q) * p * q}; this is 'right action ++ by conjugation'. commutator: (%,%) -> % ++ commutator(p,q) computes \spad{inv(p) * inv(q) * p * q}. add import RepeatedSquaring(%) x:% / y:% == x*inv(y) recip(x:%) == inv(x) _^(x:%, n:Integer):% == x ** n x:% ** n:Integer == zero? n => 1 n<0 => expt(inv(x),(-n) pretend PositiveInteger) expt(x,n pretend PositiveInteger) conjugate(p,q) == inv(q) * p * q commutator(p,q) == inv(p) * inv(q) * p * q @ \section{category INTDOM IntegralDomain} <>= )abbrev category INTDOM IntegralDomain ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: Davenport & Trager I ++ Description: ++ The category of commutative integral domains, i.e. commutative ++ rings with no zero divisors. ++ ++ Conditional attributes: ++ canonicalUnitNormal\tab{20}the canonical field is the same for all associates ++ canonicalsClosed\tab{20}the product of two canonicals is itself canonical IntegralDomain(): Category == -- Join(CommutativeRing, Algebra(%:CommutativeRing), EntireRing) with Join(CommutativeRing, Algebra(%), EntireRing) with --operations "exquo": (%,%) -> Union(%,"failed") ++ exquo(a,b) either returns an element c such that ++ \spad{c*b=a} or "failed" if no such element can be found. unitNormal: % -> Record(unit:%,canonical:%,associate:%) ++ unitNormal(x) tries to choose a canonical element ++ from the associate class of x. ++ The attribute canonicalUnitNormal, if asserted, means that ++ the "canonical" element is the same across all associates of x ++ if \spad{unitNormal(x) = [u,c,a]} then ++ \spad{u*c = x}, \spad{a*u = 1}. unitCanonical: % -> % ++ \spad{unitCanonical(x)} returns \spad{unitNormal(x).canonical}. associates?: (%,%) -> Boolean ++ associates?(x,y) tests whether x and y are associates, i.e. ++ differ by a unit factor. unit?: % -> Boolean ++ unit?(x) tests whether x is a unit, i.e. is invertible. add -- declaration x,y: % -- definitions UCA ==> Record(unit:%,canonical:%,associate:%) if not (% has Field) then unitNormal(x) == [1$%,x,1$%]$UCA -- the non-canonical definition unitCanonical(x) == unitNormal(x).canonical -- always true recip(x) == if zero? x then "failed" else _exquo(1$%,x) unit?(x) == (recip x case "failed" => false; true) if % has canonicalUnitNormal then associates?(x,y) == (unitNormal x).canonical = (unitNormal y).canonical else associates?(x,y) == zero? x => zero? y zero? y => false x exquo y case "failed" => false y exquo x case "failed" => false true @ \section{INTDOM.lsp BOOTSTRAP} {\bf INTDOM} depends on itself. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf INTDOM} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf INTDOM.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFPARAMETER |IntegralDomain;AL| 'NIL) (DEFUN |IntegralDomain| () (LET (#:G1393) (COND (|IntegralDomain;AL|) (T (SETQ |IntegralDomain;AL| (|IntegralDomain;|)))))) (DEFUN |IntegralDomain;| () (PROG (#0=#:G1391) (RETURN (PROG1 (LETT #0# (|Join| (|CommutativeRing|) (|Algebra| '$) (|EntireRing|) (|mkCategory| '|domain| '(((|exquo| ((|Union| $ "failed") $ $)) T) ((|unitNormal| ((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $)) T) ((|unitCanonical| ($ $)) T) ((|associates?| ((|Boolean|) $ $)) T) ((|unit?| ((|Boolean|) $)) T)) NIL '((|Boolean|)) NIL)) |IntegralDomain|) (SETELT #0# 0 '(|IntegralDomain|)))))) (MAKEPROP '|IntegralDomain| 'NILADIC T) @ \section{INTDOM-.lsp BOOTSTRAP} {\bf INTDOM-} depends on {\bf INTDOM}. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf INTDOM-} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf INTDOM-.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFUN |INTDOM-;unitNormal;SR;1| (|x| $) (VECTOR (|spadConstant| $ 7) |x| (|spadConstant| $ 7))) (DEFUN |INTDOM-;unitCanonical;2S;2| (|x| $) (QVELT (SPADCALL |x| (QREFELT $ 10)) 1)) (DEFUN |INTDOM-;recip;SU;3| (|x| $) (COND ((SPADCALL |x| (QREFELT $ 13)) (CONS 1 "failed")) ('T (SPADCALL (|spadConstant| $ 7) |x| (QREFELT $ 15))))) (DEFUN |INTDOM-;unit?;SB;4| (|x| $) (COND ((QEQCAR (SPADCALL |x| (QREFELT $ 17)) 1) 'NIL) ('T 'T))) (DEFUN |INTDOM-;associates?;2SB;5| (|x| |y| $) (SPADCALL (QVELT (SPADCALL |x| (QREFELT $ 10)) 1) (QVELT (SPADCALL |y| (QREFELT $ 10)) 1) (QREFELT $ 19))) (DEFUN |INTDOM-;associates?;2SB;6| (|x| |y| $) (COND ((SPADCALL |x| (QREFELT $ 13)) (SPADCALL |y| (QREFELT $ 13))) ((OR (SPADCALL |y| (QREFELT $ 13)) (OR (QEQCAR (SPADCALL |x| |y| (QREFELT $ 15)) 1) (QEQCAR (SPADCALL |y| |x| (QREFELT $ 15)) 1))) 'NIL) ('T 'T))) (DEFUN |IntegralDomain&| (|#1|) (PROG (|dv$1| |dv$| $ |pv$|) (RETURN (PROGN (LETT |dv$1| (|devaluate| |#1|) . #0=(|IntegralDomain&|)) (LETT |dv$| (LIST '|IntegralDomain&| |dv$1|) . #0#) (LETT $ (GETREFV 21) . #0#) (QSETREFV $ 0 |dv$|) (QSETREFV $ 3 (LETT |pv$| (|buildPredVector| 0 0 NIL) . #0#)) (|stuffDomainSlots| $) (QSETREFV $ 6 |#1|) (COND ((|HasCategory| |#1| '(|Field|))) ('T (QSETREFV $ 9 (CONS (|dispatchFunction| |INTDOM-;unitNormal;SR;1|) $)))) (COND ((|HasAttribute| |#1| '|canonicalUnitNormal|) (QSETREFV $ 20 (CONS (|dispatchFunction| |INTDOM-;associates?;2SB;5|) $))) ('T (QSETREFV $ 20 (CONS (|dispatchFunction| |INTDOM-;associates?;2SB;6|) $)))) $)))) (MAKEPROP '|IntegralDomain&| '|infovec| (LIST '#(NIL NIL NIL NIL NIL NIL (|local| |#1|) (0 . |One|) (|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) (4 . |unitNormal|) (9 . |unitNormal|) |INTDOM-;unitCanonical;2S;2| (|Boolean|) (14 . |zero?|) (|Union| $ '"failed") (19 . |exquo|) |INTDOM-;recip;SU;3| (25 . |recip|) |INTDOM-;unit?;SB;4| (30 . =) (36 . |associates?|)) '#(|unitNormal| 42 |unitCanonical| 47 |unit?| 52 |recip| 57 |associates?| 62) 'NIL (CONS (|makeByteWordVec2| 1 'NIL) (CONS '#() (CONS '#() (|makeByteWordVec2| 20 '(0 6 0 7 1 0 8 0 9 1 6 8 0 10 1 6 12 0 13 2 6 14 0 0 15 1 6 14 0 17 2 6 12 0 0 19 2 0 12 0 0 20 1 0 8 0 9 1 0 0 0 11 1 0 12 0 18 1 0 14 0 16 2 0 12 0 0 20))))) '|lookupComplete|)) @ \section{category LMODULE LeftModule} <>= )abbrev category LMODULE LeftModule ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ The category of left modules over an rng (ring not necessarily with unit). ++ This is an abelian group which supports left multiplation by elements of ++ the rng. ++ ++ Axioms: ++ \spad{ (a*b)*x = a*(b*x) } ++ \spad{ (a+b)*x = (a*x)+(b*x) } ++ \spad{ a*(x+y) = (a*x)+(a*y) } LeftModule(R:Rng):Category == AbelianGroup with --operations "*": (R,%) -> % ++ r*x returns the left multiplication of the module element x ++ by the ring element r. @ \section{category LINEXP LinearlyExplicitRingOver} <>= )abbrev category LINEXP LinearlyExplicitRingOver ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ An extension ring with an explicit linear dependence test. LinearlyExplicitRingOver(R:Ring): Category == Ring with reducedSystem: Matrix % -> Matrix R ++ reducedSystem(A) returns a matrix B such that \spad{A x = 0} and \spad{B x = 0} ++ have the same solutions in R. reducedSystem: (Matrix %,Vector %) -> Record(mat:Matrix R,vec:Vector R) ++ reducedSystem(A, v) returns a matrix B and a vector w such that ++ \spad{A x = v} and \spad{B x = w} have the same solutions in R. @ \section{category MODULE Module} <>= )abbrev category MODULE Module ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ The category of modules over a commutative ring. ++ ++ Axioms: ++ \spad{1*x = x} ++ \spad{(a*b)*x = a*(b*x)} ++ \spad{(a+b)*x = (a*x)+(b*x)} ++ \spad{a*(x+y) = (a*x)+(a*y)} Module(R:CommutativeRing): Category == BiModule(R,R) add if not(R is %) then x:%*r:R == r*x @ \section{category MONOID Monoid} <>= )abbrev category MONOID Monoid ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ The class of multiplicative monoids, i.e. semigroups with a ++ multiplicative identity element. ++ ++ Axioms: ++ \spad{leftIdentity("*":(%,%)->%,1)}\tab{30}\spad{1*x=x} ++ \spad{rightIdentity("*":(%,%)->%,1)}\tab{30}\spad{x*1=x} ++ ++ Conditional attributes: ++ unitsKnown\tab{15}\spadfun{recip} only returns "failed" on non-units Monoid(): Category == SemiGroup with --operations 1: constant -> % ++ 1 is the multiplicative identity. sample: constant -> % ++ sample yields a value of type % one?: % -> Boolean ++ one?(x) tests if x is equal to 1. "**": (%,NonNegativeInteger) -> % ++ x**n returns the repeated product ++ of x n times, i.e. exponentiation. "^" : (%,NonNegativeInteger) -> % ++ x^n returns the repeated product ++ of x n times, i.e. exponentiation. recip: % -> Union(%,"failed") ++ recip(x) tries to compute the multiplicative inverse for x ++ or "failed" if it cannot find the inverse (see unitsKnown). add import RepeatedSquaring(%) _^(x:%, n:NonNegativeInteger):% == x ** n one? x == x = 1 sample() == 1 recip x == -- one? x => x (x = 1) => x "failed" x:% ** n:NonNegativeInteger == zero? n => 1 expt(x,n pretend PositiveInteger) @ \section{MONOID.lsp BOOTSTRAP} {\bf MONOID} depends on itself. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf MONOID} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf MONOID.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFPARAMETER |Monoid;AL| 'NIL) (DEFUN |Monoid| () (LET (#:G1388) (COND (|Monoid;AL|) (T (SETQ |Monoid;AL| (|Monoid;|)))))) (DEFUN |Monoid;| () (PROG (#0=#:G1386) (RETURN (PROG1 (LETT #0# (|Join| (|SemiGroup|) (|mkCategory| '|domain| '(((|One| ($) |constant|) T) ((|sample| ($) |constant|) T) ((|one?| ((|Boolean|) $)) T) ((** ($ $ (|NonNegativeInteger|))) T) ((^ ($ $ (|NonNegativeInteger|))) T) ((|recip| ((|Union| $ "failed") $)) T)) NIL '((|NonNegativeInteger|) (|Boolean|)) NIL)) |Monoid|) (SETELT #0# 0 '(|Monoid|)))))) (MAKEPROP '|Monoid| 'NILADIC T) @ \section{MONOID-.lsp BOOTSTRAP} {\bf MONOID-} depends on {\bf MONOID}. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf MONOID-} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf MONOID-.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFUN |MONOID-;^;SNniS;1| (|x| |n| $) (SPADCALL |x| |n| (QREFELT $ 8))) (DEFUN |MONOID-;one?;SB;2| (|x| $) (SPADCALL |x| (|spadConstant| $ 10) (QREFELT $ 12))) (DEFUN |MONOID-;sample;S;3| ($) (|spadConstant| $ 10)) (DEFUN |MONOID-;recip;SU;4| (|x| $) (COND ((SPADCALL |x| (|spadConstant| $ 10) (QREFELT $ 12)) (CONS 0 |x|)) ('T (CONS 1 "failed")))) (DEFUN |MONOID-;**;SNniS;5| (|x| |n| $) (COND ((ZEROP |n|) (|spadConstant| $ 10)) ('T (SPADCALL |x| |n| (QREFELT $ 19))))) (DEFUN |Monoid&| (|#1|) (PROG (|dv$1| |dv$| $ |pv$|) (RETURN (PROGN (LETT |dv$1| (|devaluate| |#1|) . #0=(|Monoid&|)) (LETT |dv$| (LIST '|Monoid&| |dv$1|) . #0#) (LETT $ (GETREFV 21) . #0#) (QSETREFV $ 0 |dv$|) (QSETREFV $ 3 (LETT |pv$| (|buildPredVector| 0 0 NIL) . #0#)) (|stuffDomainSlots| $) (QSETREFV $ 6 |#1|) $)))) (MAKEPROP '|Monoid&| '|infovec| (LIST '#(NIL NIL NIL NIL NIL NIL (|local| |#1|) (|NonNegativeInteger|) (0 . **) |MONOID-;^;SNniS;1| (6 . |One|) (|Boolean|) (10 . =) |MONOID-;one?;SB;2| |MONOID-;sample;S;3| (|Union| $ '"failed") |MONOID-;recip;SU;4| (|PositiveInteger|) (|RepeatedSquaring| 6) (16 . |expt|) |MONOID-;**;SNniS;5|) '#(|sample| 22 |recip| 26 |one?| 31 ^ 36 ** 42) 'NIL (CONS (|makeByteWordVec2| 1 'NIL) (CONS '#() (CONS '#() (|makeByteWordVec2| 20 '(2 6 0 0 7 8 0 6 0 10 2 6 11 0 0 12 2 18 6 6 17 19 0 0 0 14 1 0 15 0 16 1 0 11 0 13 2 0 0 0 7 9 2 0 0 0 7 20))))) '|lookupComplete|)) @ \section{category OAGROUP OrderedAbelianGroup} <>= )abbrev category OAGROUP OrderedAbelianGroup ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ Ordered sets which are also abelian groups, such that the addition preserves ++ the ordering. OrderedAbelianGroup(): Category == Join(OrderedCancellationAbelianMonoid, AbelianGroup) @ \section{category OAMON OrderedAbelianMonoid} <>= )abbrev category OAMON OrderedAbelianMonoid ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ Ordered sets which are also abelian monoids, such that the addition ++ preserves the ordering. OrderedAbelianMonoid(): Category == Join(OrderedAbelianSemiGroup, AbelianMonoid) @ \section{category OAMONS OrderedAbelianMonoidSup} <>= )abbrev category OAMONS OrderedAbelianMonoidSup ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This domain is an OrderedAbelianMonoid with a \spadfun{sup} operation added. ++ The purpose of the \spadfun{sup} operator in this domain is to act as a supremum ++ with respect to the partial order imposed by \spadop{-}, rather than with respect to ++ the total \spad{>} order (since that is "max"). ++ ++ Axioms: ++ \spad{sup(a,b)-a \~~= "failed"} ++ \spad{sup(a,b)-b \~~= "failed"} ++ \spad{x-a \~~= "failed" and x-b \~~= "failed" => x >= sup(a,b)} OrderedAbelianMonoidSup(): Category == OrderedCancellationAbelianMonoid with --operation sup: (%,%) -> % ++ sup(x,y) returns the least element from which both ++ x and y can be subtracted. @ \section{category OASGP OrderedAbelianSemiGroup} <>= )abbrev category OASGP OrderedAbelianSemiGroup ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ Ordered sets which are also abelian semigroups, such that the addition ++ preserves the ordering. ++ \spad{ x < y => x+z < y+z} OrderedAbelianSemiGroup(): Category == Join(OrderedSet, AbelianSemiGroup) @ \section{The Ordered Semigroup Category} <>= )abbrev category OSGROUP OrderedSemiGroup ++ Author: Gabriel Dos Reis ++ Date Create May 25, 2008 ++ Date Last Updated: May 25, 2008 ++ Description: Semigroups with compatible ordering. OrderedSemiGroup(): Category == Join(OrderedSet, SemiGroup) @ @ \section{category OCAMON OrderedCancellationAbelianMonoid} <>= )abbrev category OCAMON OrderedCancellationAbelianMonoid ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ Ordered sets which are also abelian cancellation monoids, such that the addition ++ preserves the ordering. OrderedCancellationAbelianMonoid(): Category == Join(OrderedAbelianMonoid, CancellationAbelianMonoid) @ \section{category ORDFIN OrderedFinite} <>= )abbrev category ORDFIN OrderedFinite ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ Ordered finite sets. OrderedFinite(): Category == Join(OrderedSet, Finite) @ \section{category OINTDOM OrderedIntegralDomain} <>= )abbrev category OINTDOM OrderedIntegralDomain ++ Author: JH Davenport (after L Gonzalez-Vega) ++ Date Created: 30.1.96 ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ Description: ++ The category of ordered commutative integral domains, where ordering ++ and the arithmetic operations are compatible ++ OrderedIntegralDomain(): Category == Join(IntegralDomain, OrderedRing) @ \section{OINTDOM.lsp BOOTSTRAP} {\bf OINTDOM} depends on itself. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf OINTDOM} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf OINTDOM.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFPARAMETER |OrderedIntegralDomain;AL| 'NIL) (DEFUN |OrderedIntegralDomain| () (LET (#:G1387) (COND (|OrderedIntegralDomain;AL|) (T (SETQ |OrderedIntegralDomain;AL| (|OrderedIntegralDomain;|)))))) (DEFUN |OrderedIntegralDomain;| () (PROG (#0=#:G1385) (RETURN (PROG1 (LETT #0# (|Join| (|IntegralDomain|) (|OrderedRing|)) |OrderedIntegralDomain|) (SETELT #0# 0 '(|OrderedIntegralDomain|)))))) (MAKEPROP '|OrderedIntegralDomain| 'NILADIC T) @ \section{category ORDMON OrderedMonoid} <>= )abbrev category ORDMON OrderedMonoid ++ Author: ++ Date Created: ++ Date Last Updated: May 28, 2008 ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ Ordered sets which are also monoids, such that multiplication ++ preserves the ordering. ++ ++ Axioms: ++ \spad{x < y => x*z < y*z} ++ \spad{x < y => z*x < z*y} OrderedMonoid(): Category == Join(OrderedSemiGroup, Monoid) @ \section{category ORDRING OrderedRing} <>= )abbrev category ORDRING OrderedRing ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ Ordered sets which are also rings, that is, domains where the ring ++ operations are compatible with the ordering. ++ ++ Axiom: ++ \spad{0 ab< ac} OrderedRing(): Category == Join(OrderedAbelianGroup,Ring,Monoid) with positive?: % -> Boolean ++ positive?(x) tests whether x is strictly greater than 0. negative?: % -> Boolean ++ negative?(x) tests whether x is strictly less than 0. sign : % -> Integer ++ sign(x) is 1 if x is positive, -1 if x is negative, 0 if x equals 0. abs : % -> % ++ abs(x) returns the absolute value of x. add positive? x == x>0 negative? x == x<0 sign x == positive? x => 1 negative? x => -1 zero? x => 0 error "x satisfies neither positive?, negative? or zero?" abs x == positive? x => x negative? x => -x zero? x => 0 error "x satisfies neither positive?, negative? or zero?" @ \section{ORDRING.lsp BOOTSTRAP} {\bf ORDRING} depends on {\bf INT}. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf ORDRING} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf ORDRING.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Technically I can't justify this bootstrap stanza based on the lattice since {\bf INT} is already bootstrapped. However using {\bf INT} naked generates a "value stack overflow" error suggesting an infinite recursive loop. This code is here to experiment with breaking that loop. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFPARAMETER |OrderedRing;AL| 'NIL) (DEFUN |OrderedRing| () (LET (#:G1393) (COND (|OrderedRing;AL|) (T (SETQ |OrderedRing;AL| (|OrderedRing;|)))))) (DEFUN |OrderedRing;| () (PROG (#0=#:G1391) (RETURN (PROG1 (LETT #0# (|Join| (|OrderedAbelianGroup|) (|Ring|) (|Monoid|) (|mkCategory| '|domain| '(((|positive?| ((|Boolean|) $)) T) ((|negative?| ((|Boolean|) $)) T) ((|sign| ((|Integer|) $)) T) ((|abs| ($ $)) T)) NIL '((|Integer|) (|Boolean|)) NIL)) |OrderedRing|) (SETELT #0# 0 '(|OrderedRing|)))))) (MAKEPROP '|OrderedRing| 'NILADIC T) @ \section{ORDRING-.lsp BOOTSTRAP} {\bf ORDRING-} depends on {\bf ORDRING}. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf ORDRING-} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf ORDRING-.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFUN |ORDRING-;positive?;SB;1| (|x| $) (SPADCALL (|spadConstant| $ 7) |x| (QREFELT $ 9))) (DEFUN |ORDRING-;negative?;SB;2| (|x| $) (SPADCALL |x| (|spadConstant| $ 7) (QREFELT $ 9))) (DEFUN |ORDRING-;sign;SI;3| (|x| $) (COND ((SPADCALL |x| (QREFELT $ 12)) 1) ((SPADCALL |x| (QREFELT $ 13)) -1) ((SPADCALL |x| (QREFELT $ 15)) 0) ('T (|error| "x satisfies neither positive?, negative? or zero?")))) (DEFUN |ORDRING-;abs;2S;4| (|x| $) (COND ((SPADCALL |x| (QREFELT $ 12)) |x|) ((SPADCALL |x| (QREFELT $ 13)) (SPADCALL |x| (QREFELT $ 18))) ((SPADCALL |x| (QREFELT $ 15)) (|spadConstant| $ 7)) ('T (|error| "x satisfies neither positive?, negative? or zero?")))) (DEFUN |OrderedRing&| (|#1|) (PROG (|dv$1| |dv$| $ |pv$|) (RETURN (PROGN (LETT |dv$1| (|devaluate| |#1|) . #0=(|OrderedRing&|)) (LETT |dv$| (LIST '|OrderedRing&| |dv$1|) . #0#) (LETT $ (GETREFV 20) . #0#) (QSETREFV $ 0 |dv$|) (QSETREFV $ 3 (LETT |pv$| (|buildPredVector| 0 0 NIL) . #0#)) (|stuffDomainSlots| $) (QSETREFV $ 6 |#1|) $)))) (MAKEPROP '|OrderedRing&| '|infovec| (LIST '#(NIL NIL NIL NIL NIL NIL (|local| |#1|) (0 . |Zero|) (|Boolean|) (4 . <) |ORDRING-;positive?;SB;1| |ORDRING-;negative?;SB;2| (10 . |positive?|) (15 . |negative?|) (20 . |One|) (24 . |zero?|) (|Integer|) |ORDRING-;sign;SI;3| (29 . -) |ORDRING-;abs;2S;4|) '#(|sign| 34 |positive?| 39 |negative?| 44 |abs| 49) 'NIL (CONS (|makeByteWordVec2| 1 'NIL) (CONS '#() (CONS '#() (|makeByteWordVec2| 19 '(0 6 0 7 2 6 8 0 0 9 1 6 8 0 12 1 6 8 0 13 0 6 0 14 1 6 8 0 15 1 6 0 0 18 1 0 16 0 17 1 0 8 0 10 1 0 8 0 11 1 0 0 0 19))))) '|lookupComplete|)) @ \section{category ORDSET OrderedSet} <>= )abbrev category ORDSET OrderedSet ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ The class of totally ordered sets, that is, sets such that for each pair of elements \spad{(a,b)} ++ exactly one of the following relations holds \spad{a a Boolean ++ x < y is a strict total ordering on the elements of the set. ">": (%, %) -> Boolean ++ x > y is a greater than test. ">=": (%, %) -> Boolean ++ x >= y is a greater than or equal test. "<=": (%, %) -> Boolean ++ x <= y is a less than or equal test. max: (%,%) -> % ++ max(x,y) returns the maximum of x and y relative to "<". min: (%,%) -> % ++ min(x,y) returns the minimum of x and y relative to "<". add --declarations x,y: % --definitions -- These really ought to become some sort of macro max(x,y) == x > y => x y min(x,y) == x > y => y x ((x: %) > (y: %)) : Boolean == y < x ((x: %) >= (y: %)) : Boolean == not (x < y) ((x: %) <= (y: %)) : Boolean == not (y < x) @ \section{category PDRING PartialDifferentialRing} <>= )abbrev category PDRING PartialDifferentialRing ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A partial differential ring with differentiations indexed by a parameter type S. ++ ++ Axioms: ++ \spad{differentiate(x+y,e) = differentiate(x,e)+differentiate(y,e)} ++ \spad{differentiate(x*y,e) = x*differentiate(y,e) + differentiate(x,e)*y} PartialDifferentialRing(S:SetCategory): Category == Ring with differentiate: (%, S) -> % ++ differentiate(x,v) computes the partial derivative of x ++ with respect to v. differentiate: (%, List S) -> % ++ differentiate(x,[s1,...sn]) computes successive partial derivatives, ++ i.e. \spad{differentiate(...differentiate(x, s1)..., sn)}. differentiate: (%, S, NonNegativeInteger) -> % ++ differentiate(x, s, n) computes multiple partial derivatives, i.e. ++ n-th derivative of x with respect to s. differentiate: (%, List S, List NonNegativeInteger) -> % ++ differentiate(x, [s1,...,sn], [n1,...,nn]) computes ++ multiple partial derivatives, i.e. D: (%, S) -> % ++ D(x,v) computes the partial derivative of x ++ with respect to v. D: (%, List S) -> % ++ D(x,[s1,...sn]) computes successive partial derivatives, ++ i.e. \spad{D(...D(x, s1)..., sn)}. D: (%, S, NonNegativeInteger) -> % ++ D(x, s, n) computes multiple partial derivatives, i.e. ++ n-th derivative of x with respect to s. D: (%, List S, List NonNegativeInteger) -> % ++ D(x, [s1,...,sn], [n1,...,nn]) computes ++ multiple partial derivatives, i.e. ++ \spad{D(...D(x, s1, n1)..., sn, nn)}. add differentiate(r:%, l:List S) == for s in l repeat r := differentiate(r, s) r differentiate(r:%, s:S, n:NonNegativeInteger) == for i in 1..n repeat r := differentiate(r, s) r differentiate(r:%, ls:List S, ln:List NonNegativeInteger) == for s in ls for n in ln repeat r := differentiate(r, s, n) r D(r:%, v:S) == differentiate(r,v) D(r:%, lv:List S) == differentiate(r,lv) D(r:%, v:S, n:NonNegativeInteger) == differentiate(r,v,n) D(r:%, lv:List S, ln:List NonNegativeInteger) == differentiate(r, lv, ln) @ \section{category PFECAT PolynomialFactorizationExplicit} <>= )abbrev category PFECAT PolynomialFactorizationExplicit ++ Author: James Davenport ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This is the category of domains that know "enough" about ++ themselves in order to factor univariate polynomials over themselves. ++ This will be used in future releases for supporting factorization ++ over finitely generated coefficient fields, it is not yet available ++ in the current release of axiom. PolynomialFactorizationExplicit(): Category == Definition where P ==> SparseUnivariatePolynomial % Definition ==> UniqueFactorizationDomain with -- operations squareFreePolynomial: P -> Factored(P) ++ squareFreePolynomial(p) returns the ++ square-free factorization of the ++ univariate polynomial p. factorPolynomial: P -> Factored(P) ++ factorPolynomial(p) returns the factorization ++ into irreducibles of the univariate polynomial p. factorSquareFreePolynomial: P -> Factored(P) ++ factorSquareFreePolynomial(p) factors the ++ univariate polynomial p into irreducibles ++ where p is known to be square free ++ and primitive with respect to its main variable. gcdPolynomial: (P, P) -> P ++ gcdPolynomial(p,q) returns the gcd of the univariate ++ polynomials p qnd q. -- defaults to Euclidean, but should be implemented via -- modular or p-adic methods. solveLinearPolynomialEquation: (List P, P) -> Union(List P,"failed") ++ solveLinearPolynomialEquation([f1, ..., fn], g) ++ (where the fi are relatively prime to each other) ++ returns a list of ai such that ++ \spad{g/prod fi = sum ai/fi} ++ or returns "failed" if no such list of ai's exists. if % has CharacteristicNonZero then conditionP: Matrix % -> Union(Vector %,"failed") ++ conditionP(m) returns a vector of elements, not all zero, ++ whose \spad{p}-th powers (p is the characteristic of the domain) ++ are a solution of the homogenous linear system represented ++ by m, or "failed" is there is no such vector. charthRoot: % -> Union(%,"failed") ++ charthRoot(r) returns the \spad{p}-th root of r, or "failed" ++ if none exists in the domain. -- this is a special case of conditionP, but often the one we want add gcdPolynomial(f,g) == zero? f => g zero? g => f cf:=content f if not one? cf then f:=(f exquo cf)::P cg:=content g if not one? cg then g:=(g exquo cg)::P ans:=subResultantGcd(f,g)$P gcd(cf,cg)*(ans exquo content ans)::P if % has CharacteristicNonZero then charthRoot f == -- to take p'th root of f, solve the system X-fY=0, -- so solution is [x,y] -- with x^p=X and y^p=Y, then (x/y)^p = f zero? f => 0 m:Matrix % := matrix [[1,-f]] ans:= conditionP m ans case "failed" => "failed" (ans.1) exquo (ans.2) if % has Field then solveLinearPolynomialEquation(lf,g) == multiEuclidean(lf,g)$P else solveLinearPolynomialEquation(lf,g) == LPE ==> LinearPolynomialEquationByFractions % solveLinearPolynomialEquationByFractions(lf,g)$LPE @ \section{category PID PrincipalIdealDomain} <>= )abbrev category PID PrincipalIdealDomain ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ The category of constructive principal ideal domains, i.e. ++ where a single generator can be constructively found for ++ any ideal given by a finite set of generators. ++ Note that this constructive definition only implies that ++ finitely generated ideals are principal. It is not clear ++ what we would mean by an infinitely generated ideal. PrincipalIdealDomain(): Category == GcdDomain with --operations principalIdeal: List % -> Record(coef:List %,generator:%) ++ principalIdeal([f1,...,fn]) returns a record whose ++ generator component is a generator of the ideal ++ generated by \spad{[f1,...,fn]} whose coef component satisfies ++ \spad{generator = sum (input.i * coef.i)} expressIdealMember: (List %,%) -> Union(List %,"failed") ++ expressIdealMember([f1,...,fn],h) returns a representation ++ of h as a linear combination of the fi or "failed" if h ++ is not in the ideal generated by the fi. @ \section{category RMODULE RightModule} <>= )abbrev category RMODULE RightModule ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ The category of right modules over an rng (ring not necessarily with unit). ++ This is an abelian group which supports right multiplation by elements of ++ the rng. ++ ++ Axioms: ++ \spad{ x*(a*b) = (x*a)*b } ++ \spad{ x*(a+b) = (x*a)+(x*b) } ++ \spad{ (x+y)*x = (x*a)+(y*a) } RightModule(R:Rng):Category == AbelianGroup with --operations "*": (%,R) -> % ++ x*r returns the right multiplication of the module element x ++ by the ring element r. @ \section{category RING Ring} <>= )abbrev category RING Ring ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ The category of rings with unity, always associative, but ++ not necessarily commutative. --Ring(): Category == Join(Rng,Monoid,LeftModule(%:Rng)) with Ring(): Category == Join(Rng,Monoid,LeftModule(%)) with --operations characteristic: () -> NonNegativeInteger ++ characteristic() returns the characteristic of the ring ++ this is the smallest positive integer n such that ++ \spad{n*x=0} for all x in the ring, or zero if no such n ++ exists. --We can not make this a constant, since some domains are mutable coerce: Integer -> % ++ coerce(i) converts the integer i to a member of the given domain. -- recip: % -> Union(%,"failed") -- inherited from Monoid unitsKnown ++ recip truly yields ++ reciprocal or "failed" if not a unit. ++ Note: \spad{recip(0) = "failed"}. add n:Integer coerce(n) == n * 1$% @ \section{RING.lsp BOOTSTRAP} {\bf RING} depends on itself. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf RING} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf RING.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFPARAMETER |Ring;AL| 'NIL) (DEFUN |Ring| () (LET (#:G1387) (COND (|Ring;AL|) (T (SETQ |Ring;AL| (|Ring;|)))))) (DEFUN |Ring;| () (PROG (#0=#:G1385) (RETURN (PROG1 (LETT #0# (|Join| (|Rng|) (|Monoid|) (|LeftModule| '$) (|mkCategory| '|domain| '(((|characteristic| ((|NonNegativeInteger|))) T) ((|coerce| ($ (|Integer|))) T)) '((|unitsKnown| T)) '((|Integer|) (|NonNegativeInteger|)) NIL)) |Ring|) (SETELT #0# 0 '(|Ring|)))))) (MAKEPROP '|Ring| 'NILADIC T) @ \section{RING-.lsp BOOTSTRAP} {\bf RING-} depends on {\bf RING}. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf RING-} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf RING-.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFUN |RING-;coerce;IS;1| (|n| $) (SPADCALL |n| (|spadConstant| $ 7) (QREFELT $ 9))) (DEFUN |Ring&| (|#1|) (PROG (|dv$1| |dv$| $ |pv$|) (RETURN (PROGN (LETT |dv$1| (|devaluate| |#1|) . #0=(|Ring&|)) (LETT |dv$| (LIST '|Ring&| |dv$1|) . #0#) (LETT $ (GETREFV 12) . #0#) (QSETREFV $ 0 |dv$|) (QSETREFV $ 3 (LETT |pv$| (|buildPredVector| 0 0 NIL) . #0#)) (|stuffDomainSlots| $) (QSETREFV $ 6 |#1|) $)))) (MAKEPROP '|Ring&| '|infovec| (LIST '#(NIL NIL NIL NIL NIL NIL (|local| |#1|) (0 . |One|) (|Integer|) (4 . *) |RING-;coerce;IS;1| (|OutputForm|)) '#(|coerce| 10) 'NIL (CONS (|makeByteWordVec2| 1 'NIL) (CONS '#() (CONS '#() (|makeByteWordVec2| 10 '(0 6 0 7 2 6 0 8 0 9 1 0 0 8 10))))) '|lookupComplete|)) @ \section{category RNG Rng} <>= )abbrev category RNG Rng ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ The category of associative rings, not necessarily commutative, and not ++ necessarily with a 1. This is a combination of an abelian group ++ and a semigroup, with multiplication distributing over addition. ++ ++ Axioms: ++ \spad{ x*(y+z) = x*y + x*z} ++ \spad{ (x+y)*z = x*z + y*z } ++ ++ Conditional attributes: ++ \spadnoZeroDivisors\tab{25}\spad{ ab = 0 => a=0 or b=0} Rng(): Category == Join(AbelianGroup,SemiGroup) @ \section{RNG.lsp BOOTSTRAP} {\bf RNG} depends on a chain of files. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf RNG} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf RNG.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFPARAMETER |Rng;AL| 'NIL) (DEFUN |Rng| () (LET (#:G1387) (COND (|Rng;AL|) (T (SETQ |Rng;AL| (|Rng;|)))))) (DEFUN |Rng;| () (PROG (#0=#:G1385) (RETURN (PROG1 (LETT #0# (|Join| (|AbelianGroup|) (|SemiGroup|)) |Rng|) (SETELT #0# 0 '(|Rng|)))))) (MAKEPROP '|Rng| 'NILADIC T) @ \section{category SGROUP SemiGroup} <>= )abbrev category SGROUP SemiGroup ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ the class of all multiplicative semigroups, i.e. a set ++ with an associative operation \spadop{*}. ++ ++ Axioms: ++ \spad{associative("*":(%,%)->%)}\tab{30}\spad{ (x*y)*z = x*(y*z)} ++ ++ Conditional attributes: ++ \spad{commutative("*":(%,%)->%)}\tab{30}\spad{ x*y = y*x } SemiGroup(): Category == SetCategory with --operations "*": (%,%) -> % ++ x*y returns the product of x and y. "**": (%,PositiveInteger) -> % ++ x**n returns the repeated product ++ of x n times, i.e. exponentiation. "^": (%,PositiveInteger) -> % ++ x^n returns the repeated product ++ of x n times, i.e. exponentiation. add import RepeatedSquaring(%) x:% ** n:PositiveInteger == expt(x,n) _^(x:%, n:PositiveInteger):% == x ** n @ \section{category SETCAT SetCategory} <>= )abbrev category SETCAT SetCategory ++ Author: ++ Date Created: ++ Date Last Updated: ++ 09/09/92 RSS added latex and hash ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ \spadtype{SetCategory} is the basic category for describing a collection ++ of elements with \spadop{=} (equality) and \spadfun{coerce} to output form. ++ ++ Conditional Attributes: ++ canonical\tab{15}data structure equality is the same as \spadop{=} SetCategory(): Category == Join(BasicType,CoercibleTo OutputForm) with --operations hash: % -> SingleInteger ++ hash(s) calculates a hash code for s. latex: % -> String ++ latex(s) returns a LaTeX-printable output ++ representation of s. add hash(s : %): SingleInteger == 0$SingleInteger latex(s : %): String == "\mbox{\bf Unimplemented}" @ \section{SETCAT.lsp BOOTSTRAP} {\bf SETCAT} needs {\bf SINT} which needs {\bf UFD} which needs {\bf GCDDOM} which needs {\bf COMRING} which needs {\bf RING} which needs {\bf RNG} which needs {\bf ABELGRP} which needs {\bf CABMON} which needs {\bf ABELMON} which needs {\bf ABELSG} which needs {\bf SETCAT}. We break this chain with {\bf SETCAT.lsp} which we cache here. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf SETCAT} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf SETCAT.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFPARAMETER |SetCategory;AL| 'NIL) (DEFUN |SetCategory| () (LET (#:G1388) (COND (|SetCategory;AL|) (T (SETQ |SetCategory;AL| (|SetCategory;|)))))) (DEFUN |SetCategory;| () (PROG (#0=#:G1386) (RETURN (PROG1 (LETT #0# (|sublisV| (PAIR '(#1=#:G1385) (LIST '(|OutputForm|))) (|Join| (|BasicType|) (|CoercibleTo| '#1#) (|mkCategory| '|domain| '(((|hash| ((|SingleInteger|) $)) T) ((|latex| ((|String|) $)) T)) NIL '((|String|) (|SingleInteger|)) NIL))) |SetCategory|) (SETELT #0# 0 '(|SetCategory|)))))) (MAKEPROP '|SetCategory| 'NILADIC T) @ \section{SETCAT-.lsp BOOTSTRAP} {\bf SETCAT-} is the implementation of the operations exported by {\bf SETCAT}. It comes into existance whenever {\bf SETCAT} gets compiled by Axiom. However this will not happen at the lisp level so we also cache this information here. See the explanation under the {\bf SETCAT.lsp} section for more details. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (PUT '|SETCAT-;hash;SSi;1| '|SPADreplace| '(XLAM (|s|) 0)) (DEFUN |SETCAT-;hash;SSi;1| (|s| $) 0) (PUT '|SETCAT-;latex;SS;2| '|SPADreplace| '(XLAM (|s|) "\\mbox{\\bf Unimplemented}")) (DEFUN |SETCAT-;latex;SS;2| (|s| $) "\\mbox{\\bf Unimplemented}") (DEFUN |SetCategory&| (|#1|) (PROG (|dv$1| |dv$| $ |pv$|) (RETURN (PROGN (LETT |dv$1| (|devaluate| |#1|) . #0=(|SetCategory&|)) (LETT |dv$| (LIST '|SetCategory&| |dv$1|) . #0#) (LETT $ (GETREFV 11) . #0#) (QSETREFV $ 0 |dv$|) (QSETREFV $ 3 (LETT |pv$| (|buildPredVector| 0 0 NIL) . #0#)) (|stuffDomainSlots| $) (QSETREFV $ 6 |#1|) $)))) (MAKEPROP '|SetCategory&| '|infovec| (LIST '#(NIL NIL NIL NIL NIL NIL (|local| |#1|) (|SingleInteger|) |SETCAT-;hash;SSi;1| (|String|) |SETCAT-;latex;SS;2|) '#(|latex| 0 |hash| 5) 'NIL (CONS (|makeByteWordVec2| 1 'NIL) (CONS '#() (CONS '#() (|makeByteWordVec2| 10 '(1 0 9 0 10 1 0 7 0 8))))) '|lookupComplete|)) @ \section{category STEP StepThrough} <>= )abbrev category STEP StepThrough ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A class of objects which can be 'stepped through'. ++ Repeated applications of \spadfun{nextItem} is guaranteed never to ++ return duplicate items and only return "failed" after exhausting ++ all elements of the domain. ++ This assumes that the sequence starts with \spad{init()}. ++ For infinite domains, repeated application ++ of \spadfun{nextItem} is not required to reach all possible domain elements ++ starting from any initial element. ++ ++ Conditional attributes: ++ infinite\tab{15}repeated \spad{nextItem}'s are never "failed". StepThrough(): Category == SetCategory with --operations init: constant -> % ++ init() chooses an initial object for stepping. nextItem: % -> Union(%,"failed") ++ nextItem(x) returns the next item, or "failed" if domain is exhausted. @ \section{category UFD UniqueFactorizationDomain} <>= )abbrev category UFD UniqueFactorizationDomain ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A constructive unique factorization domain, i.e. where ++ we can constructively factor members into a product of ++ a finite number of irreducible elements. UniqueFactorizationDomain(): Category == GcdDomain with --operations prime?: % -> Boolean ++ prime?(x) tests if x can never be written as the product of two ++ non-units of the ring, ++ i.e., x is an irreducible element. squareFree : % -> Factored(%) ++ squareFree(x) returns the square-free factorization of x ++ i.e. such that the factors are pairwise relatively prime ++ and each has multiple prime factors. squareFreePart: % -> % ++ squareFreePart(x) returns a product of prime factors of ++ x each taken with multiplicity one. factor: % -> Factored(%) ++ factor(x) returns the factorization of x into irreducibles. add squareFreePart x == unit(s := squareFree x) * _*/[f.factor for f in factors s] prime? x == # factorList factor x = 1 @ \section{UFD.lsp BOOTSTRAP} {\bf UFD} needs {\bf GCDDOM} which needs {\bf COMRING} which needs {\bf RING} which needs {\bf RNG} which needs {\bf ABELGRP} which needs {\bf CABMON} which needs {\bf ABELMON} which needs {\bf ABELSG} which needs {\bf SETCAT} which needs {\bf SINT} which needs {\bf UFD}. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf UFD} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf UFD.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFPARAMETER |UniqueFactorizationDomain;AL| 'NIL) (DEFUN |UniqueFactorizationDomain| () (LET (#:G1387) (COND (|UniqueFactorizationDomain;AL|) (T (SETQ |UniqueFactorizationDomain;AL| (|UniqueFactorizationDomain;|)))))) (DEFUN |UniqueFactorizationDomain;| () (PROG (#0=#:G1385) (RETURN (PROG1 (LETT #0# (|Join| (|GcdDomain|) (|mkCategory| '|domain| '(((|prime?| ((|Boolean|) $)) T) ((|squareFree| ((|Factored| $) $)) T) ((|squareFreePart| ($ $)) T) ((|factor| ((|Factored| $) $)) T)) NIL '((|Factored| $) (|Boolean|)) NIL)) |UniqueFactorizationDomain|) (SETELT #0# 0 '(|UniqueFactorizationDomain|)))))) (MAKEPROP '|UniqueFactorizationDomain| 'NILADIC T) @ \section{UFD-.lsp BOOTSTRAP} {\bf UFD-} needs {\bf UFD}. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf UFD-} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf UFD-.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (/VERSIONCHECK 2) (DEFUN |UFD-;squareFreePart;2S;1| (|x| $) (PROG (|s| |f| #0=#:G1403 #1=#:G1401 #2=#:G1399 #3=#:G1400) (RETURN (SEQ (SPADCALL (SPADCALL (LETT |s| (SPADCALL |x| (|getShellEntry| $ 8)) |UFD-;squareFreePart;2S;1|) (|getShellEntry| $ 10)) (PROGN (LETT #3# NIL |UFD-;squareFreePart;2S;1|) (SEQ (LETT |f| NIL |UFD-;squareFreePart;2S;1|) (LETT #0# (SPADCALL |s| (|getShellEntry| $ 14)) |UFD-;squareFreePart;2S;1|) G190 (COND ((OR (ATOM #0#) (PROGN (LETT |f| (CAR #0#) |UFD-;squareFreePart;2S;1|) NIL)) (GO G191))) (SEQ (EXIT (PROGN (LETT #1# (QCAR |f|) |UFD-;squareFreePart;2S;1|) (COND (#3# (LETT #2# (SPADCALL #2# #1# (|getShellEntry| $ 15)) |UFD-;squareFreePart;2S;1|)) ('T (PROGN (LETT #2# #1# |UFD-;squareFreePart;2S;1|) (LETT #3# 'T |UFD-;squareFreePart;2S;1|))))))) (LETT #0# (CDR #0#) |UFD-;squareFreePart;2S;1|) (GO G190) G191 (EXIT NIL)) (COND (#3# #2#) ('T (|spadConstant| $ 16)))) (|getShellEntry| $ 15)))))) (DEFUN |UFD-;prime?;SB;2| (|x| $) (EQL (LENGTH (SPADCALL (SPADCALL |x| (|getShellEntry| $ 18)) (|getShellEntry| $ 22))) 1)) (DEFUN |UniqueFactorizationDomain&| (|#1|) (PROG (|dv$1| |dv$| $ |pv$|) (RETURN (PROGN (LETT |dv$1| (|devaluate| |#1|) . #0=(|UniqueFactorizationDomain&|)) (LETT |dv$| (LIST '|UniqueFactorizationDomain&| |dv$1|) . #0#) (LETT $ (|newShell| 25) . #0#) (|setShellEntry| $ 0 |dv$|) (|setShellEntry| $ 3 (LETT |pv$| (|buildPredVector| 0 0 NIL) . #0#)) (|stuffDomainSlots| $) (|setShellEntry| $ 6 |#1|) $)))) (MAKEPROP '|UniqueFactorizationDomain&| '|infovec| (LIST '#(NIL NIL NIL NIL NIL NIL (|local| |#1|) (|Factored| $) (0 . |squareFree|) (|Factored| 6) (5 . |unit|) (|Integer|) (|Record| (|:| |factor| 6) (|:| |exponent| 11)) (|List| 12) (10 . |factors|) (15 . *) (21 . |One|) |UFD-;squareFreePart;2S;1| (25 . |factor|) (|Union| '"nil" '"sqfr" '"irred" '"prime") (|Record| (|:| |flg| 19) (|:| |fctr| 6) (|:| |xpnt| 11)) (|List| 20) (30 . |factorList|) (|Boolean|) |UFD-;prime?;SB;2|) '#(|squareFreePart| 35 |prime?| 40) 'NIL (CONS (|makeByteWordVec2| 1 'NIL) (CONS '#() (CONS '#() (|makeByteWordVec2| 24 '(1 6 7 0 8 1 9 6 0 10 1 9 13 0 14 2 6 0 0 0 15 0 6 0 16 1 6 7 0 18 1 9 21 0 22 1 0 0 0 17 1 0 23 0 24))))) '|lookupComplete|)) @ \section{category VSPACE VectorSpace} <>= )abbrev category VSPACE VectorSpace ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ Vector Spaces (not necessarily finite dimensional) over a field. VectorSpace(S:Field): Category == Module(S) with "/" : (%, S) -> % ++ x/y divides the vector x by the scalar y. dimension: () -> CardinalNumber ++ dimension() returns the dimensionality of the vector space. add (v:% / s:S):% == inv(s) * v @ \section{License} <>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}