\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra card.spad} \author{Stephen M. Watt} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain CARD CardinalNumber} <<domain CARD CardinalNumber>>= import Boolean import NonNegativeInteger )abbrev domain CARD CardinalNumber ++ Author: S.M. Watt ++ Date Created: June 1986 ++ Date Last Updated: May 1990 ++ Basic Operations: Aleph, +, -, *, ** ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keywords: cardinal number, transfinite arithmetic ++ Examples: ++ References: ++ Goedel, "The consistency of the continuum hypothesis", ++ Ann. Math. Studies, Princeton Univ. Press, 1940 ++ Description: ++ Members of the domain CardinalNumber are values indicating the ++ cardinality of sets, both finite and infinite. Arithmetic operations ++ are defined on cardinal numbers as follows. ++ ++ If \spad{x = #X} and \spad{y = #Y} then ++ \spad{x+y = #(X+Y)} \tab{30}disjoint union ++ \spad{x-y = #(X-Y)} \tab{30}relative complement ++ \spad{x*y = #(X*Y)} \tab{30}cartesian product ++ \spad{x**y = #(X**Y)} \tab{30}\spad{X**Y = \{g| g:Y->X\}} ++ ++ The non-negative integers have a natural construction as cardinals ++ \spad{0 = #\{\}}, \spad{1 = \{0\}}, \spad{2 = \{0, 1\}}, ..., \spad{n = \{i| 0 <= i < n\}}. ++ ++ That \spad{0} acts as a zero for the multiplication of cardinals is ++ equivalent to the axiom of choice. ++ ++ The generalized continuum hypothesis asserts ++ \center{\spad{2**Aleph i = Aleph(i+1)}} ++ and is independent of the axioms of set theory [Goedel 1940]. ++ ++ Three commonly encountered cardinal numbers are ++ \spad{a = #Z} \tab{30}countable infinity ++ \spad{c = #R} \tab{30}the continuum ++ \spad{f = #\{g| g:[0,1]->R\}} ++ ++ In this domain, these values are obtained using ++ \spad{a := Aleph 0}, \spad{c := 2**a}, \spad{f := 2**c}. ++ CardinalNumber: Join(OrderedSet, AbelianMonoid, Monoid, RetractableTo NonNegativeInteger) with commutative "*" ++ a domain D has \spad{commutative("*")} if it has an operation ++ \spad{"*": (D,D) -> D} which is commutative. -: (%,%) -> Union(%,"failed") ++ \spad{x - y} returns an element z such that \spad{z+y=x} or "failed" ++ if no such element exists. **: (%, %) -> % ++ \spad{x**y} returns \spad{#(X**Y)} where \spad{X**Y} is defined ++ as \spad{\{g| g:Y->X\}}. Aleph: NonNegativeInteger -> % ++ Aleph(n) provides the named (infinite) cardinal number. finite?: % -> Boolean ++ finite?(\spad{a}) determines whether ++ \spad{a} is a finite cardinal, ++ i.e. an integer. countable?: % -> Boolean ++ countable?(\spad{a}) determines ++ whether \spad{a} is a countable cardinal, ++ i.e. an integer or \spad{Aleph 0}. generalizedContinuumHypothesisAssumed?: () -> Boolean ++ generalizedContinuumHypothesisAssumed?() ++ tests if the hypothesis is currently assumed. generalizedContinuumHypothesisAssumed: Boolean -> Boolean ++ generalizedContinuumHypothesisAssumed(bool) ++ is used to dictate whether the hypothesis is to be assumed. == add NNI ==> NonNegativeInteger FINord ==> -1 DUMMYval ==> -1 Rep := Record(order: Integer, ival: Integer) GCHypothesis: Reference(Boolean) := ref false -- Creation 0 == [FINord, 0] 1 == [FINord, 1] coerce(n:NonNegativeInteger):% == [FINord, n] Aleph n == [n, DUMMYval] -- Output ALEPHexpr := "Aleph"::OutputForm coerce(x: %): OutputForm == x.order = FINord => (x.ival)::OutputForm prefix(ALEPHexpr, [(x.order)::OutputForm]) -- Manipulation x = y == x.order ~= y.order => false finite? x => x.ival = y.ival true -- equal transfinites x < y == x.order < y.order => true x.order > y.order => false finite? x => x.ival < y.ival false -- equal transfinites x:% + y:% == finite? x and finite? y => [FINord, x.ival+y.ival] max(x, y) x - y == x < y => "failed" finite? x => [FINord, x.ival-y.ival] x > y => x "failed" -- equal transfinites x:% * y:% == finite? x and finite? y => [FINord, x.ival*y.ival] x = 0 or y = 0 => 0 max(x, y) n:NonNegativeInteger * x:% == finite? x => [FINord, n*x.ival] n = 0 => 0 x (x: %) ** (y: %) == y = 0 => x ~= 0 => 1 error "0**0 not defined for cardinal numbers." finite? y => not finite? x => x [FINord,x.ival**(y.ival):NNI] x = 0 => 0 x = 1 => 1 GCHypothesis() => [max(x.order-1, y.order) + 1, DUMMYval] error "Transfinite exponentiation only implemented under GCH" finite? x == x.order = FINord countable? x == x.order < 1 retract(x:%):NonNegativeInteger == finite? x => (x.ival)::NNI error "Not finite" retractIfCan(x:%):Union(NonNegativeInteger, "failed") == finite? x => (x.ival)::NNI "failed" -- State manipulation generalizedContinuumHypothesisAssumed?() == GCHypothesis() generalizedContinuumHypothesisAssumed b == (GCHypothesis() := b) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain CARD CardinalNumber>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}