\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra brill.spad} \author{Frederic Lehobey, James H. Davenport} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package BRILL BrillhartTests} <<package BRILL BrillhartTests>>= )abbrev package BRILL BrillhartTests ++ Author: Frederic Lehobey, James H. Davenport ++ Date Created: 28 June 1994 ++ Date Last Updated: 11 July 1997 ++ Basic Operations: brillhartIrreducible? ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keywords: factorization ++ Examples: ++ References: ++ [1] John Brillhart, Note on Irreducibility Testing, ++ Mathematics of Computation, vol. 35, num. 35, Oct. 1980, 1379-1381 ++ [2] James Davenport, On Brillhart Irreducibility. To appear. ++ [3] John Brillhart, On the Euler and Bernoulli polynomials, ++ J. Reine Angew. Math., v. 234, (1969), pp. 45-64 BrillhartTests(UP): Exports == Implementation where N ==> NonNegativeInteger Z ==> Integer UP: UnivariatePolynomialCategory Z Exports ==> with brillhartIrreducible?: UP -> Boolean -- See [1] ++ brillhartIrreducible?(p) returns \spad{true} if p can be shown to be ++ irreducible by a remark of Brillhart, \spad{false} is inconclusive. brillhartIrreducible?: (UP,Boolean) -> Boolean -- See [1] ++ brillhartIrreducible?(p,noLinears) returns \spad{true} if p can be ++ shown to be irreducible by a remark of Brillhart, \spad{false} else. ++ If noLinears is \spad{true}, we are being told p has no linear factors ++ \spad{false} does not mean that p is reducible. brillhartTrials: () -> N ++ brillhartTrials() returns the number of tests in ++ \spadfun{brillhartIrreducible?}. brillhartTrials: N -> N ++ brillhartTrials(n) sets to n the number of tests in ++ \spadfun{brillhartIrreducible?} and returns the previous value. noLinearFactor?: UP -> Boolean -- See [3] p. 47 ++ noLinearFactor?(p) returns \spad{true} if p can be shown to have no ++ linear factor by a theorem of Lehmer, \spad{false} else. I insist on ++ the fact that \spad{false} does not mean that p has a linear factor. Implementation ==> add import GaloisGroupFactorizationUtilities(Z,UP,Float) squaredPolynomial(p:UP):Boolean == d := degree p d = 0 => true odd? d => false squaredPolynomial reductum p primeEnough?(n:Z,b:Z):Boolean == -- checks if n is prime, with the possible exception of -- factors whose product is at most b import Float bb: Float := b::Float for i in 2..b repeat while (d:= n exquo i) case Integer repeat n:=d::Integer bb:=bb / i::Float bb < 1$Float => return false --- we over-divided, so it can't be prime prime? n brillharttrials: N := 6 brillhartTrials():N == brillharttrials brillhartTrials(n:N):N == (brillharttrials,n) := (n,brillharttrials) n brillhartIrreducible?(p:UP):Boolean == brillhartIrreducible?(p,noLinearFactor? p) brillhartIrreducible?(p:UP,noLinears:Boolean):Boolean == -- See [1] zero? brillharttrials => false origBound := (largeEnough := rootBound(p)+1) -- see remarks 2 and 4 even0 := even? coefficient(p,0) even1 := even? p(1) polyx2 := squaredPolynomial(p) prime? p(largeEnough) => true not polyx2 and prime? p(-largeEnough) => true -- one? brillharttrials => false (brillharttrials = 1) => false largeEnough := largeEnough+1 primeEnough?(p(largeEnough),if noLinears then 4 else 2) => true not polyx2 and primeEnough?(p(-largeEnough),if noLinears then 4 else 2) => true if odd? largeEnough then if even0 then largeEnough := largeEnough+1 else if even1 then largeEnough := largeEnough+1 count :=(if polyx2 then 2 else 1)*(brillharttrials-2)+largeEnough for i in (largeEnough+1)..count repeat small := if noLinears then (i-origBound)**2 else (i-origBound) primeEnough?(p(i),small) => return true not polyx2 and primeEnough?(p(-i),small) => return true false noLinearFactor?(p:UP):Boolean == (odd? leadingCoefficient p) and (odd? coefficient(p,0)) and (odd? p(1)) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package BRILL BrillhartTests>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}