\documentclass{article} \usepackage{axiom} \title{src/algebra boolean.spad} \author{Stephen M. Watt, Michael Monagan, Gabriel Dos~Reis} \begin{document} \maketitle \begin{abstract} \end{abstract} \tableofcontents \eject \section{category PROPLOG PropositionalLogic} <<category PROPLOG PropositionalLogic>>= )abbrev category PROPLOG PropositionalLogic ++ Author: Gabriel Dos Reis ++ Date Created: Januray 14, 2008 ++ Date Last Modified: May 27, 2009 ++ Description: This category declares the connectives of ++ Propositional Logic. PropositionalLogic(): Category == SetCategory with true: % ++ true is a logical constant. false: % ++ false is a logical constant. not: % -> % ++ not p returns the logical negation of `p'. and: (%, %) -> % ++ p and q returns the logical conjunction of `p', `q'. or: (%, %) -> % ++ p or q returns the logical disjunction of `p', `q'. implies: (%,%) -> % ++ implies(p,q) returns the logical implication of `q' by `p'. equiv: (%,%) -> % ++ equiv(p,q) returns the logical equivalence of `p', `q'. @ \section{domain PROPFRML PropositionalFormula} <<domain PROPFRML PropositionalFormula>>= )set mess autoload on )abbrev domain PROPFRML PropositionalFormula ++ Author: Gabriel Dos Reis ++ Date Created: Januray 14, 2008 ++ Date Last Modified: May 11, 2009 ++ Description: This domain implements propositional formula build ++ over a term domain, that itself belongs to PropositionalLogic PropositionalFormula(T: SetCategory): Public == Private where Public == Join(PropositionalLogic, CoercibleFrom T) with isTerm : % -> Maybe T ++ \spad{isTerm f} returns a value \spad{v} such that ++ \spad{v case T} holds if the formula \spad{f} is a term. isNot : % -> Maybe % ++ \spad{isNot f} returns a value \spad{v} such that ++ \spad{v case %} holds if the formula \spad{f} is a negation. isAnd : % -> Maybe Pair(%,%) ++ \spad{isAnd f} returns a value \spad{v} such that ++ \spad{v case Pair(%,%)} holds if the formula \spad{f} ++ is a conjunction formula. isOr : % -> Maybe Pair(%,%) ++ \spad{isOr f} returns a value \spad{v} such that ++ \spad{v case Pair(%,%)} holds if the formula \spad{f} ++ is a disjunction formula. isImplies : % -> Maybe Pair(%,%) ++ \spad{isImplies f} returns a value \spad{v} such that ++ \spad{v case Pair(%,%)} holds if the formula \spad{f} ++ is an implication formula. isEquiv : % -> Maybe Pair(%,%) ++ \spad{isEquiv f} returns a value \spad{v} such that ++ \spad{v case Pair(%,%)} holds if the formula \spad{f} ++ is an equivalence formula. Private == add FORMULA ==> Union(base: T, unForm: %, binForm: Record(op: Symbol, lhs: %, rhs: %)) Rep == FORMULA coerce(t: T): % == per [t]$FORMULA not p == per [p]$FORMULA binaryForm(o: Symbol, l: %, r: %): % == per [[o, l, r]$Record(op: Symbol, lhs: %, rhs: %)]$FORMULA p and q == binaryForm('and, p, q) p or q == binaryForm('or, p, q) implies(p,q) == binaryForm('implies, p, q) equiv(p,q) == binaryForm('equiv, p, q) -- returns true if the proposition `p' is a formula of kind -- indicated by `o'. isBinaryNode?(p: %, o: Symbol): Boolean == p' := rep p p' case binForm and p'.binForm.op = o -- returns the operands of a binary formula node binaryOperands(p: %): Pair(%,%) == p' := (rep p).binForm pair(p'.lhs,p'.rhs)$Pair(%,%) isTerm f == rep f case base => just rep(f).base nothing isNot f == rep f case unForm => just rep(f).unForm nothing isAnd f == isBinaryNode?(f,'and) => just binaryOperands f nothing isOr f == isBinaryNode?(f,'or) => just binaryOperands f nothing isImplies f == isBinaryNode?(f, 'implies) => just binaryOperands f nothing isEquiv f == isBinaryNode?(f,'equiv) => just binaryOperands f nothing -- Unparsing grammar. -- -- Ideally, the following syntax would the external form -- Formula: -- EquivFormula -- -- EquivFormula: -- ImpliesFormula -- ImpliesFormula <=> EquivFormula -- -- ImpliesFormula: -- OrFormula -- OrFormula => ImpliesFormula -- -- OrFormula: -- AndFormula -- AndFormula or OrFormula -- -- AndFormula -- NotFormula -- NotFormula and AndFormula -- -- NotFormula: -- PrimaryFormula -- not NotFormula -- -- PrimaryFormula: -- Term -- ( Formula ) -- -- Note: Since the token '=>' already means a construct different -- from what we would like to have as a notation for -- propositional logic, we will output the formula `p => q' -- as implies(p,q), which looks like a function call. -- Similarly, we do not have the token `<=>' for logical -- equivalence; so we unparser `p <=> q' as equiv(p,q). -- -- So, we modify the nonterminal PrimaryFormula to read -- PrimaryFormula: -- Term -- implies(Formula, Formula) -- equiv(Formula, Formula) formula: % -> OutputForm coerce(p: %): OutputForm == formula p primaryFormula(p: %): OutputForm == (t := isTerm p) case T => t@T::OutputForm if rep p case binForm then p' := (rep p).binForm p'.op = 'implies or p'.op = 'equiv => return elt(outputForm p'.op, [formula p'.lhs, formula p'.rhs])$OutputForm paren(formula p)$OutputForm notFormula(p: %): OutputForm == isNot p case % => elt(outputForm 'not, [notFormula((rep p).unForm)])$OutputForm primaryFormula p andFormula(p: %): OutputForm == isAnd p case Pair(%,%) => p' := (rep p).binForm -- ??? idealy, we should be using `and$OutputForm' but -- ??? a bug in the compiler currently prevents that. infix(outputForm 'and, notFormula p'.lhs, andFormula p'.rhs)$OutputForm notFormula p orFormula(p: %): OutputForm == isOr p case Pair(%,%) => p' := (rep p).binForm -- ??? idealy, we should be using `or$OutputForm' but -- ??? a bug in the compiler currently prevents that. infix(outputForm 'or, andFormula p'.lhs, orFormula p'.rhs)$OutputForm andFormula p formula p == -- Note: this should be equivFormula, but see the explanation above. orFormula p @ \section{domain REF Reference} <<domain REF Reference>>= )abbrev domain REF Reference ++ Author: Stephen M. Watt ++ Date Created: ++ Date Last Changed: May 27, 2009 ++ Basic Operations: deref, elt, ref, setelt, setref, = ++ Related Constructors: ++ Keywords: reference ++ Description: \spadtype{Reference} is for making a changeable instance ++ of something. Reference(S:Type): Type with ref : S -> % ++ ref(n) creates a pointer (reference) to the object n. elt : % -> S ++ elt(n) returns the object n. setelt: (%, S) -> S ++ setelt(n,m) changes the value of the object n to m. -- alternates for when bugs don't allow the above deref : % -> S ++ deref(n) is equivalent to \spad{elt(n)}. setref: (%, S) -> S ++ setref(n,m) same as \spad{setelt(n,m)}. = : (%, %) -> Boolean ++ a=b tests if \spad{a} and b are equal. if S has SetCategory then SetCategory == add Rep := Record(value: S) p = q == EQ(p, q)$Lisp ref v == [v] elt p == p.value setelt(p, v) == p.value := v deref p == p.value setref(p, v) == p.value := v if S has SetCategory then coerce p == prefix('ref::Identifier::OutputForm, [p.value::OutputForm]) @ \section{category LOGIC Logic} <<category LOGIC Logic>>= )abbrev category LOGIC Logic ++ Author: ++ Date Created: ++ Date Last Changed: May 27, 2009 ++ Basic Operations: ~, /\, \/ ++ Related Constructors: ++ Keywords: boolean ++ Description: ++ `Logic' provides the basic operations for lattices, ++ e.g., boolean algebra. Logic: Category == BasicType with ~: % -> % ++ ~(x) returns the logical complement of x. /\: (%, %) -> % ++ \spadignore { /\ }returns the logical `meet', e.g. `and'. \/: (%, %) -> % ++ \spadignore{ \/ } returns the logical `join', e.g. `or'. add x \/ y == ~(~x /\ ~y) @ \section{domain BOOLEAN Boolean} <<domain BOOLEAN Boolean>>= )abbrev domain BOOLEAN Boolean ++ Author: Stephen M. Watt ++ Date Created: ++ Date Last Changed: May 27, 2009 ++ Basic Operations: true, false, not, and, or, xor, nand, nor, implies ++ Related Constructors: ++ Keywords: boolean ++ Description: \spadtype{Boolean} is the elementary logic with 2 values: ++ true and false Boolean(): Join(OrderedFinite, Logic, PropositionalLogic, ConvertibleTo InputForm) with xor : (%, %) -> % ++ xor(a,b) returns the logical exclusive {\em or} ++ of Boolean \spad{a} and b. nand : (%, %) -> % ++ nand(a,b) returns the logical negation of \spad{a} and b. nor : (%, %) -> % ++ nor(a,b) returns the logical negation of \spad{a} or b. test: % -> % ++ test(b) returns b and is provided for compatibility with the new compiler. == add import EQ: (%,%) -> Boolean from Foreign Builtin import AND: (%,%) -> % from Foreign Builtin import OR: (%,%) -> % from Foreign Builtin import NOT: % -> % from Foreign Builtin test a == a true == 'T pretend % false == NIL$Foreign(Builtin) sample() == true not b == NOT b ~ b == (b => false; true) a and b == AND(a,b) a /\ b == AND(a,b) a or b == OR(a,b) a \/ b == OR(a,b) xor(a, b) == (a => NOT b; b) nor(a, b) == (a => false; NOT b) nand(a, b) == (a => NOT b; true) a = b == EQ(a, b) implies(a, b) == (a => b; true) equiv(a,b) == EQ(a, b) a < b == (b => NOT a; false) size() == 2 index i == even?(i::Integer) => false true lookup a == a => 1 2 random() == even?(random()$Integer) => false true convert(x:%):InputForm == x => 'true 'false coerce(x:%):OutputForm == x => 'true 'false @ \section{domain IBITS IndexedBits} <<domain IBITS IndexedBits>>= )abbrev domain IBITS IndexedBits ++ Author: Stephen Watt and Michael Monagan ++ Date Created: ++ July 86 ++ Change History: ++ Oct 87 ++ Basic Operations: range ++ Related Constructors: ++ Keywords: indexed bits ++ Description: \spadtype{IndexedBits} is a domain to compactly represent ++ large quantities of Boolean data. IndexedBits(mn:Integer): BitAggregate() with -- temporaries until parser gets better Not: % -> % ++ Not(n) returns the bit-by-bit logical {\em Not} of n. Or : (%, %) -> % ++ Or(n,m) returns the bit-by-bit logical {\em Or} of ++ n and m. And: (%, %) -> % ++ And(n,m) returns the bit-by-bit logical {\em And} of ++ n and m. == add range: (%, Integer) -> Integer --++ range(j,i) returnes the range i of the boolean j. minIndex u == mn range(v, i) == i >= 0 and i < #v => i error "Index out of range" coerce(v):OutputForm == t:Character := char "1" f:Character := char "0" s := new(#v, space()$Character)$String for i in minIndex(s)..maxIndex(s) for j in mn.. repeat s.i := if v.j then t else f s::OutputForm new(n, b) == BVEC_-MAKE_-FULL(n,TRUTH_-TO_-BIT(b)$Lisp)$Lisp empty() == BVEC_-MAKE_-FULL(0,0)$Lisp copy v == BVEC_-COPY(v)$Lisp #v == BVEC_-SIZE(v)$Lisp v = u == BVEC_-EQUAL(v, u)$Lisp v < u == BVEC_-GREATER(u, v)$Lisp u and v == (#v=#u => BVEC_-AND(v,u)$Lisp; map("and",v,u)) u or v == (#v=#u => BVEC_-OR(v, u)$Lisp; map("or", v,u)) xor(v,u) == (#v=#u => BVEC_-XOR(v,u)$Lisp; map("xor",v,u)) setelt(v:%, i:Integer, f:Boolean) == BIT_-TO_-TRUTH(BVEC_-SETELT(v, range(v, i-mn), TRUTH_-TO_-BIT(f)$Lisp)$Lisp)$Lisp elt(v:%, i:Integer) == BIT_-TO_-TRUTH(BVEC_-ELT(v, range(v, i-mn))$Lisp)$Lisp Not v == BVEC_-NOT(v)$Lisp And(u, v) == (#v=#u => BVEC_-AND(v,u)$Lisp; map("and",v,u)) Or(u, v) == (#v=#u => BVEC_-OR(v, u)$Lisp; map("or", v,u)) @ \section{domain BITS Bits} <<domain BITS Bits>>= )abbrev domain BITS Bits ++ Author: Stephen M. Watt ++ Date Created: ++ Change History: ++ Basic Operations: And, Not, Or ++ Related Constructors: ++ Keywords: bits ++ Description: \spadtype{Bits} provides logical functions for Indexed Bits. Bits(): Exports == Implementation where Exports == BitAggregate() with bits: (NonNegativeInteger, Boolean) -> % ++ bits(n,b) creates bits with n values of b Implementation == IndexedBits(1) add bits(n,b) == new(n,b) @ \section{Kleene's Three-Valued Logic} <<domain KTVLOGIC KleeneTrivalentLogic>>= )abbrev domain KTVLOGIC KleeneTrivalentLogic ++ Author: Gabriel Dos Reis ++ Date Created: September 20, 2008 ++ Date Last Modified: May 27, 2009 ++ Description: ++ This domain implements Kleene's 3-valued propositional logic. KleeneTrivalentLogic(): Public == Private where Public == PropositionalLogic with unknown: % ++ the indefinite `unknown' case: (%,[| false |]) -> Boolean ++ x case false holds if the value of `x' is `false' case: (%,[| unknown |]) -> Boolean ++ x case unknown holds if the value of `x' is `unknown' case: (%,[| true |]) -> Boolean ++ s case true holds if the value of `x' is `true'. Private == add Rep == Byte -- We need only 3 bits, in fact. false == per(0::Byte) unknown == per(1::Byte) true == per(2::Byte) x = y == rep x = rep y x case true == x = true x case false == x = false x case unknown == x = unknown not x == x case false => true x case unknown => unknown false x and y == x case false => false x case unknown => y case false => false unknown y x or y == x case false => y x case true => x y case true => y unknown implies(x,y) == x case false => true x case true => y y case true => true unknown equiv(x,y) == x case unknown => x x case true => y not y coerce(x: %): OutputForm == x case true => outputForm 'true x case false => outputForm 'false outputForm 'unknown @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical Algorithms Group Ltd. --All rights reserved. --Copyright (C) 2007-2009, Gabriel Dos Reis. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical Algorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain REF Reference>> <<category LOGIC Logic>> <<domain BOOLEAN Boolean>> <<domain IBITS IndexedBits>> <<domain BITS Bits>> <<category PROPLOG PropositionalLogic>> <<domain PROPFRML PropositionalFormula>> <<domain KTVLOGIC KleeneTrivalentLogic>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}