\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra bezout.spad} \author{Clifton J. Williamson} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package BEZOUT BezoutMatrix} <<package BEZOUT BezoutMatrix>>= )abbrev package BEZOUT BezoutMatrix ++ Author: Clifton J. Williamson ++ Date Created: 2 August 1988 ++ Date Last Updated: 3 November 1993 ++ Basic Operations: bezoutMatrix, bezoutResultant, bezoutDiscriminant ++ Related Domains ++ Also See: ++ AMS Classifiactions: ++ Keywords: Bezout matrix, resultant, discriminant ++ Examples: ++ Reference: Knuth, The Art of Computer Programming, 2nd edition, ++ Vol. 2, p. 619, problem 12. ++ Description: ++ \spadtype{BezoutMatrix} contains functions for computing resultants and ++ discriminants using Bezout matrices. BezoutMatrix(R,UP,M,Row,Col): Exports == Implementation where R : Ring UP : UnivariatePolynomialCategory R Row : FiniteLinearAggregate R Col : FiniteLinearAggregate R M : MatrixCategory(R,Row,Col) I ==> Integer lc ==> leadingCoefficient Exports ==> with sylvesterMatrix: (UP,UP) -> M ++ sylvesterMatrix(p,q) returns the Sylvester matrix for the two ++ polynomials p and q. bezoutMatrix: (UP,UP) -> M ++ bezoutMatrix(p,q) returns the Bezout matrix for the two ++ polynomials p and q. if R has commutative("*") then bezoutResultant: (UP,UP) -> R ++ bezoutResultant(p,q) computes the resultant of the two ++ polynomials p and q by computing the determinant of a Bezout matrix. bezoutDiscriminant: UP -> R ++ bezoutDiscriminant(p) computes the discriminant of a polynomial p ++ by computing the determinant of a Bezout matrix. Implementation ==> add sylvesterMatrix(p,q) == n1 := degree p; n2 := degree q; n := n1 + n2 sylmat : M := new(n,n,0) minR := minRowIndex sylmat; minC := minColIndex sylmat maxR := maxRowIndex sylmat; maxC := maxColIndex sylmat p0 := p -- fill in coefficients of 'p' while not zero? p0 repeat coef := lc p0; deg := degree p0; p0 := reductum p0 -- put bk = coef(p,k) in sylmat(minR + i,minC + i + (n1 - k)) for i in 0..n2 - 1 repeat qsetelt_!(sylmat,minR + i,minC + n1 - deg + i,coef) q0 := q -- fill in coefficients of 'q' while not zero? q0 repeat coef := lc q0; deg := degree q0; q0 := reductum q0 for i in 0..n1-1 repeat qsetelt_!(sylmat,minR + n2 + i,minC + n2 - deg + i,coef) sylmat bezoutMatrix(p,q) == -- This function computes the Bezout matrix for 'p' and 'q'. -- See Knuth, The Art of Computer Programming, Vol. 2, p. 619, # 12. -- One must have deg(p) >= deg(q), so the arguments are reversed -- if this is not the case. n1 := degree p; n2 := degree q; n := n1 + n2 n1 < n2 => bezoutMatrix(q,p) m1 : I := n1 - 1; m2 : I := n2 - 1; m : I := n - 1 -- 'sylmat' will be a matrix consisting of the first n1 columns -- of the standard Sylvester matrix for 'p' and 'q' sylmat : M := new(n,n1,0) minR := minRowIndex sylmat; minC := minColIndex sylmat maxR := maxRowIndex sylmat; maxC := maxColIndex sylmat p0 := p -- fill in coefficients of 'p' while not ground? p0 repeat coef := lc p0; deg := degree p0; p0 := reductum p0 -- put bk = coef(p,k) in sylmat(minR + i,minC + i + (n1 - k)) -- for i = 0... -- quit when i > m2 or when i + (n1 - k) > m1, whichever happens first for i in 0..min(m2,deg - 1) repeat qsetelt_!(sylmat,minR + i,minC + n1 - deg + i,coef) q0 := q -- fill in coefficients of 'q' while not zero? q0 repeat coef := lc q0; deg := degree q0; q0 := reductum q0 -- put ak = coef(q,k) in sylmat(minR + n1 + i,minC + i + (n2 - k)) -- for i = 0... -- quit when i > m1 or when i + (n2 - k) > m1, whichever happens first -- since n2 - k >= 0, we quit when i + (n2 - k) > m1 for i in 0..(deg + n1 - n2 - 1) repeat qsetelt_!(sylmat,minR + n2 + i,minC + n2 - deg + i,coef) -- 'bezmat' will be the 'Bezout matrix' as described in Knuth bezmat : M := new(n1,n1,0) for i in 0..m2 repeat -- replace A_i by (b_0 A_i + ... + b_{n_2-1-i} A_{n_2 - 1}) - -- (a_0 B_i + ... + a_{n_2-1-i} B_{n_2-1}), as in Knuth bound : I := n2 - i; q0 := q while not zero? q0 repeat deg := degree q0 if (deg < bound) then -- add b_deg A_{n_2 - deg} to the new A_i coef := lc q0 for k in minC..maxC repeat c := coef * qelt(sylmat,minR + m2 - i - deg,k) + qelt(bezmat,minR + m2 - i,k) qsetelt_!(bezmat,minR + m2 - i,k,c) q0 := reductum q0 p0 := p while not zero? p0 repeat deg := degree p0 if deg < bound then coef := lc p0 -- subtract a_deg B_{n_2 - deg} from the new A_i for k in minC..maxC repeat c := -coef * qelt(sylmat,minR + m - i - deg,k) + qelt(bezmat,minR + m2 - i,k) qsetelt_!(bezmat,minR + m2 - i,k,c) p0 := reductum p0 for i in n2..m1 repeat for k in minC..maxC repeat qsetelt_!(bezmat,minR + i,k,qelt(sylmat,minR + i,k)) bezmat if R has commutative("*") then bezoutResultant(f,g) == determinant bezoutMatrix(f,g) if R has IntegralDomain then bezoutDiscriminant f == degMod4 := (degree f) rem 4 (degMod4 = 0) or (degMod4 = 1) => (bezoutResultant(f,differentiate f) exquo (lc f)) :: R -((bezoutResultant(f,differentiate f) exquo (lc f)) :: R) else bezoutDiscriminant f == lc f = 1 => degMod4 := (degree f) rem 4 (degMod4 = 0) or (degMod4 = 1) => bezoutResultant(f,differentiate f) -bezoutResultant(f,differentiate f) error "bezoutDiscriminant: leading coefficient must be 1" @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package BEZOUT BezoutMatrix>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}