\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra algfunc.spad} \author{Manuel Bronstein} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{category ACF AlgebraicallyClosedField} <<category ACF AlgebraicallyClosedField>>= )abbrev category ACF AlgebraicallyClosedField ++ Author: Manuel Bronstein ++ Date Created: 22 Mar 1988 ++ Date Last Updated: 27 November 1991 ++ Description: ++ Model for algebraically closed fields. ++ Keywords: algebraic, closure, field. AlgebraicallyClosedField(): Category == Join(Field,RadicalCategory) with rootOf: Polynomial $ -> $ ++ rootOf(p) returns y such that \spad{p(y) = 0}. ++ Error: if p has more than one variable y. rootOf: SparseUnivariatePolynomial $ -> $ ++ rootOf(p) returns y such that \spad{p(y) = 0}. rootOf: (SparseUnivariatePolynomial $, Symbol) -> $ ++ rootOf(p, y) returns y such that \spad{p(y) = 0}. ++ The object returned displays as \spad{'y}. rootsOf: Polynomial $ -> List $ ++ rootsOf(p) returns \spad{[y1,...,yn]} such that \spad{p(yi) = 0}. ++ Note: the returned symbols y1,...,yn are bound in the ++ interpreter to respective root values. ++ Error: if p has more than one variable y. rootsOf: SparseUnivariatePolynomial $ -> List $ ++ rootsOf(p) returns \spad{[y1,...,yn]} such that \spad{p(yi) = 0}. ++ Note: the returned symbols y1,...,yn are bound in the interpreter ++ to respective root values. rootsOf: (SparseUnivariatePolynomial $, Symbol) -> List $ ++ rootsOf(p, y) returns \spad{[y1,...,yn]} such that \spad{p(yi) = 0}; ++ The returned roots display as \spad{'y1},...,\spad{'yn}. ++ Note: the returned symbols y1,...,yn are bound in the interpreter ++ to respective root values. zeroOf: Polynomial $ -> $ ++ zeroOf(p) returns y such that \spad{p(y) = 0}. ++ If possible, y is expressed in terms of radicals. ++ Otherwise it is an implicit algebraic quantity. ++ Error: if p has more than one variable y. zeroOf: SparseUnivariatePolynomial $ -> $ ++ zeroOf(p) returns y such that \spad{p(y) = 0}; ++ if possible, y is expressed in terms of radicals. ++ Otherwise it is an implicit algebraic quantity. zeroOf: (SparseUnivariatePolynomial $, Symbol) -> $ ++ zeroOf(p, y) returns y such that \spad{p(y) = 0}; ++ if possible, y is expressed in terms of radicals. ++ Otherwise it is an implicit algebraic quantity which ++ displays as \spad{'y}. zerosOf: Polynomial $ -> List $ ++ zerosOf(p) returns \spad{[y1,...,yn]} such that \spad{p(yi) = 0}. ++ The yi's are expressed in radicals if possible. ++ Otherwise they are implicit algebraic quantities. ++ The returned symbols y1,...,yn are bound in the interpreter ++ to respective root values. ++ Error: if p has more than one variable y. zerosOf: SparseUnivariatePolynomial $ -> List $ ++ zerosOf(p) returns \spad{[y1,...,yn]} such that \spad{p(yi) = 0}. ++ The yi's are expressed in radicals if possible, and otherwise ++ as implicit algebraic quantities. ++ The returned symbols y1,...,yn are bound in the interpreter ++ to respective root values. zerosOf: (SparseUnivariatePolynomial $, Symbol) -> List $ ++ zerosOf(p, y) returns \spad{[y1,...,yn]} such that \spad{p(yi) = 0}. ++ The yi's are expressed in radicals if possible, and otherwise ++ as implicit algebraic quantities ++ which display as \spad{'yi}. ++ The returned symbols y1,...,yn are bound in the interpreter ++ to respective root values. add SUP ==> SparseUnivariatePolynomial $ assign : (Symbol, $) -> $ allroots: (SUP, Symbol, (SUP, Symbol) -> $) -> List $ binomialRoots: (SUP, Symbol, (SUP, Symbol) -> $) -> List $ zeroOf(p:SUP) == assign(x := new(), zeroOf(p, x)) rootOf(p:SUP) == assign(x := new(), rootOf(p, x)) zerosOf(p:SUP) == zerosOf(p, new()) rootsOf(p:SUP) == rootsOf(p, new()) rootsOf(p:SUP, y:Symbol) == allroots(p, y, rootOf) zerosOf(p:SUP, y:Symbol) == allroots(p, y, zeroOf) assign(x, f) == assignSymbol(x, f, $)$Foreign(Builtin) f zeroOf(p:Polynomial $) == empty?(l := variables p) => error "zeroOf: constant polynomial" zeroOf(univariate p, first l) rootOf(p:Polynomial $) == empty?(l := variables p) => error "rootOf: constant polynomial" rootOf(univariate p, first l) zerosOf(p:Polynomial $) == empty?(l := variables p) => error "zerosOf: constant polynomial" zerosOf(univariate p, first l) rootsOf(p:Polynomial $) == empty?(l := variables p) => error "rootsOf: constant polynomial" rootsOf(univariate p, first l) zeroOf(p:SUP, y:Symbol) == zero?(d := degree p) => error "zeroOf: constant polynomial" zero? coefficient(p, 0) => 0 a := leadingCoefficient p d = 2 => b := coefficient(p, 1) (sqrt(b**2 - 4 * a * coefficient(p, 0)) - b) / (2 * a) (r := retractIfCan(reductum p)@Union($,"failed")) case "failed" => rootOf(p, y) nthRoot(- (r::$ / a), d) binomialRoots(p, y, fn) == -- p = a * x**n + b alpha := assign(x := new(y)$Symbol, fn(p, x)) one?(n := degree p) => [ alpha ] cyclo := cyclotomic(n, monomial(1,1)$SUP)$NumberTheoreticPolynomialFunctions(SUP) beta := assign(x := new(y)$Symbol, fn(cyclo, x)) [alpha*beta**i for i in 0..(n-1)::NonNegativeInteger] import PolynomialDecomposition(SUP,$) allroots(p, y, fn) == zero? p => error "allroots: polynomial must be nonzero" zero? coefficient(p,0) => concat(0, allroots(p quo monomial(1,1), y, fn)) zero?(p1:=reductum p) => empty() zero? reductum p1 => binomialRoots(p, y, fn) decompList := decompose(p) # decompList > 1 => h := last decompList g := leftFactor(p,h) :: SUP groots := allroots(g, y, fn) "append"/[allroots(h-r::SUP, y, fn) for r in groots] ans := nil()$List($) while not ground? p repeat alpha := assign(x := new(y)$Symbol, fn(p, x)) q := monomial(1, 1)$SUP - alpha::SUP if not zero?(p alpha) then p := p quo q ans := concat(alpha, ans) else while zero?(p alpha) repeat p := (p exquo q)::SUP ans := concat(alpha, ans) reverse! ans @ \section{category ACFS AlgebraicallyClosedFunctionSpace} <<category ACFS AlgebraicallyClosedFunctionSpace>>= )abbrev category ACFS AlgebraicallyClosedFunctionSpace ++ Author: Manuel Bronstein ++ Date Created: 31 October 1988 ++ Date Last Updated: 7 October 1991 ++ Description: ++ Model for algebraically closed function spaces. ++ Keywords: algebraic, closure, field. AlgebraicallyClosedFunctionSpace(R: IntegralDomain): Category == Join(AlgebraicallyClosedField, FunctionSpace R) with rootOf : $ -> $ ++ rootOf(p) returns y such that \spad{p(y) = 0}. ++ Error: if p has more than one variable y. rootsOf: $ -> List $ ++ rootsOf(p, y) returns \spad{[y1,...,yn]} such that \spad{p(yi) = 0}; ++ Note: the returned symbols y1,...,yn are bound in the interpreter ++ to respective root values. ++ Error: if p has more than one variable y. rootOf : ($, Symbol) -> $ ++ rootOf(p,y) returns y such that \spad{p(y) = 0}. ++ The object returned displays as \spad{'y}. rootsOf: ($, Symbol) -> List $ ++ rootsOf(p, y) returns \spad{[y1,...,yn]} such that \spad{p(yi) = 0}; ++ The returned roots display as \spad{'y1},...,\spad{'yn}. ++ Note: the returned symbols y1,...,yn are bound in the interpreter ++ to respective root values. zeroOf : $ -> $ ++ zeroOf(p) returns y such that \spad{p(y) = 0}. ++ The value y is expressed in terms of radicals if possible,and otherwise ++ as an implicit algebraic quantity. ++ Error: if p has more than one variable. zerosOf: $ -> List $ ++ zerosOf(p) returns \spad{[y1,...,yn]} such that \spad{p(yi) = 0}. ++ The yi's are expressed in radicals if possible. ++ The returned symbols y1,...,yn are bound in the interpreter ++ to respective root values. ++ Error: if p has more than one variable. zeroOf : ($, Symbol) -> $ ++ zeroOf(p, y) returns y such that \spad{p(y) = 0}. ++ The value y is expressed in terms of radicals if possible,and otherwise ++ as an implicit algebraic quantity ++ which displays as \spad{'y}. zerosOf: ($, Symbol) -> List $ ++ zerosOf(p, y) returns \spad{[y1,...,yn]} such that \spad{p(yi) = 0}. ++ The yi's are expressed in radicals if possible, and otherwise ++ as implicit algebraic quantities ++ which display as \spad{'yi}. ++ The returned symbols y1,...,yn are bound in the interpreter ++ to respective root values. add rootOf(p:$) == empty?(l := variables p) => error "rootOf: constant expression" rootOf(p, first l) rootsOf(p:$) == empty?(l := variables p) => error "rootsOf: constant expression" rootsOf(p, first l) zeroOf(p:$) == empty?(l := variables p) => error "zeroOf: constant expression" zeroOf(p, first l) zerosOf(p:$) == empty?(l := variables p) => error "zerosOf: constant expression" zerosOf(p, first l) zeroOf(p:$, x:Symbol) == n := numer(f := univariate(p, kernel(x)$Kernel($))) positive? degree denom f => error "zeroOf: variable appears in denom" degree n = 0 => error "zeroOf: constant expression" zeroOf(n, x) rootOf(p:$, x:Symbol) == n := numer(f := univariate(p, kernel(x)$Kernel($))) positive? degree denom f => error "roofOf: variable appears in denom" degree n = 0 => error "rootOf: constant expression" rootOf(n, x) zerosOf(p:$, x:Symbol) == n := numer(f := univariate(p, kernel(x)$Kernel($))) positive? degree denom f => error "zerosOf: variable appears in denom" degree n = 0 => empty() zerosOf(n, x) rootsOf(p:$, x:Symbol) == n := numer(f := univariate(p, kernel(x)$Kernel($))) positive? degree denom f => error "roofsOf: variable appears in denom" degree n = 0 => empty() rootsOf(n, x) rootsOf(p:SparseUnivariatePolynomial $, y:Symbol) == (r := retractIfCan(p)@Union($,"failed")) case $ => rootsOf(r::$,y) rootsOf(p, y)$AlgebraicallyClosedField_&($) zerosOf(p:SparseUnivariatePolynomial $, y:Symbol) == (r := retractIfCan(p)@Union($,"failed")) case $ => zerosOf(r::$,y) zerosOf(p, y)$AlgebraicallyClosedField_&($) zeroOf(p:SparseUnivariatePolynomial $, y:Symbol) == (r := retractIfCan(p)@Union($,"failed")) case $ => zeroOf(r::$, y) zeroOf(p, y)$AlgebraicallyClosedField_&($) @ \section{package AF AlgebraicFunction} \subsection{hackroot(x, n)} This used to read: \begin{verbatim} hackroot(x, n) == (n = 1) or (x = 1) => x (x ~= -1) and (((num := numer x) = 1) or (num = -1)) => inv hackroot((num * denom x)::F, n) (x = -1) and n = 4 => ((-1::F) ** (1::Q / 2::Q) + 1) / ((2::F) ** (1::Q / 2::Q)) kernel(oproot, [x, n::F]) @ \end{verbatim} but the condition is wrong. For example, if $x$ is negative then $x=-1/2$ would pass the test and give $$1/(-2)^(1/n) \ne (-1/2)^(1/n)$$ <<hackroot(x, n)>>= hackroot(x, n) == (n = 1) or (x = 1) => x (not one?(dx := denom x) and ((rx := retractIfCan(dx)@Union(Integer,"failed")) case Integer) and positive?(rx)) => hackroot((numer x)::F, n)/hackroot(rx::Integer::F, n) (x = -1) and n = 4 => ((-1::F) ** (1::Q / 2::Q) + 1) / ((2::F) ** (1::Q / 2::Q)) kernel(oproot, [x, n::F]) @ <<package AF AlgebraicFunction>>= )abbrev package AF AlgebraicFunction ++ Author: Manuel Bronstein ++ Date Created: 21 March 1988 ++ Date Last Updated: 11 November 1993 ++ Description: ++ This package provides algebraic functions over an integral domain. ++ Keywords: algebraic, function. AlgebraicFunction(R, F): Exports == Implementation where R: IntegralDomain F: FunctionSpace R SE ==> Symbol Z ==> Integer Q ==> Fraction Z OP ==> BasicOperator K ==> Kernel F P ==> SparseMultivariatePolynomial(R, K) UP ==> SparseUnivariatePolynomial F UPR ==> SparseUnivariatePolynomial R Exports ==> with rootOf : (UP, SE) -> F ++ rootOf(p, y) returns y such that \spad{p(y) = 0}. ++ The object returned displays as \spad{'y}. operator: OP -> OP ++ operator(op) returns a copy of \spad{op} with the domain-dependent ++ properties appropriate for \spad{F}. ++ Error: if op is not an algebraic operator, that is, ++ an nth root or implicit algebraic operator. belong? : OP -> Boolean ++ belong?(op) is true if \spad{op} is an algebraic operator, that is, ++ an nth root or implicit algebraic operator. inrootof: (UP, F) -> F ++ inrootof(p, x) should be a non-exported function. -- un-export when the compiler accepts conditional local functions! droot : List F -> OutputForm ++ droot(l) should be a non-exported function. -- un-export when the compiler accepts conditional local functions! if R has RetractableTo Integer then ** : (F, Q) -> F ++ x ** q is \spad{x} raised to the rational power \spad{q}. minPoly: K -> UP ++ minPoly(k) returns the defining polynomial of \spad{k}. definingPolynomial: F -> F ++ definingPolynomial(f) returns the defining polynomial of \spad{f} ++ as an element of \spad{F}. ++ Error: if f is not a kernel. iroot : (R, Z) -> F ++ iroot(p, n) should be a non-exported function. -- un-export when the compiler accepts conditional local functions! Implementation ==> add macro ALGOP == '%alg macro SPECIALDISP == '%specialDisp macro SPECIALDIFF == '%specialDiff ialg : List F -> F dvalg: (List F, SE) -> F dalg : List F -> OutputForm opalg := operator('rootOf)$CommonOperators oproot := operator('nthRoot)$CommonOperators belong? op == has?(op, ALGOP) dalg l == second(l)::OutputForm rootOf(p, x) == k := kernel(x)$K (r := retractIfCan(p)@Union(F, "failed")) case "failed" => inrootof(p, k::F) n := numer(f := univariate(r::F, k)) positive? degree denom f => error "roofOf: variable appears in denom" inrootof(n, k::F) dvalg(l, x) == p := numer univariate(first l, retract(second l)@K) alpha := kernel(opalg, l) - (map(differentiate(#1, x), p) alpha) / ((differentiate p) alpha) ialg l == f := univariate(p := first l, retract(x := second l)@K) positive? degree denom f => error "roofOf: variable appears in denom" inrootof(numer f, x) operator op == is?(op,'rootOf) => opalg is?(op,'nthRoot) => oproot error "Unknown operator" if R has AlgebraicallyClosedField then UP2R: UP -> Union(UPR, "failed") inrootof(q, x) == monomial? q => 0 (d := degree q) <= 0 => error "rootOf: constant polynomial" one? d=> - leadingCoefficient(reductum q) / leadingCoefficient q ((rx := retractIfCan(x)@Union(SE, "failed")) case SE) and ((r := UP2R q) case UPR) => rootOf(r::UPR, rx::SE)::F kernel(opalg, [q x, x]) UP2R p == ans:UPR := 0 while p ~= 0 repeat (r := retractIfCan(leadingCoefficient p)@Union(R, "failed")) case "failed" => return "failed" ans := ans + monomial(r::R, degree p) p := reductum p ans else inrootof(q, x) == monomial? q => 0 (d := degree q) <= 0 => error "rootOf: constant polynomial" one? d => - leadingCoefficient(reductum q) /leadingCoefficient q kernel(opalg, [q x, x]) evaluate(opalg, ialg)$BasicOperatorFunctions1(F) setProperty(opalg, SPECIALDIFF, dvalg@((List F, SE) -> F) pretend None) setProperty(opalg, SPECIALDISP, dalg@(List F -> OutputForm) pretend None) if R has RetractableTo Integer then import PolynomialRoots(IndexedExponents K, K, R, P, F) dumvar := '%%var::F lzero : List F -> F dvroot : List F -> F inroot : List F -> F hackroot: (F, Z) -> F inroot0 : (F, Z, Boolean, Boolean) -> F lzero l == 0 droot l == x := first(l)::OutputForm (n := retract(second l)@Z) = 2 => root x root(x, n::OutputForm) dvroot l == n := retract(second l)@Z (first(l) ** ((1 - n) / n)) / (n::F) x ** q == qr := divide(numer q, denom q) x ** qr.quotient * inroot([x, (denom q)::F]) ** qr.remainder <<hackroot(x, n)>> inroot l == zero?(n := retract(second l)@Z) => error "root: exponent = 0" one?(x := first l) or one? n => x (r := retractIfCan(x)@Union(R,"failed")) case R => iroot(r::R,n) (u := isExpt(x)) case Record(var:K, exponent:Z) => pr := u::Record(var:K, exponent:Z) is?(pr.var,oproot) and #argument(pr.var) = 2 => (first argument(pr.var)) ** (pr.exponent /$Fraction(Z) (n * retract(second argument(pr.var))@Z)) inroot0(x, n, false, false) inroot0(x, n, false, false) -- removes powers of positive integers from numer and denom -- num? or den? is true if numer or denom already processed inroot0(x, n, num?, den?) == rn:Union(Z, "failed") := (num? => "failed"; retractIfCan numer x) rd:Union(Z, "failed") := (den? => "failed"; retractIfCan denom x) (rn case Z) and (rd case Z) => rec := qroot(rn::Z / rd::Z, n::NonNegativeInteger) rec.coef * hackroot(rec.radicand, rec.exponent) rn case Z => rec := qroot(rn::Z::Fraction(Z), n::NonNegativeInteger) rec.coef * inroot0((rec.radicand**(n exquo rec.exponent)::Z) / (denom(x)::F), n, true, den?) rd case Z => rec := qroot(rd::Z::Fraction(Z), n::NonNegativeInteger) inroot0((numer(x)::F) / (rec.radicand ** (n exquo rec.exponent)::Z), n, num?, true) / rec.coef hackroot(x, n) if R has AlgebraicallyClosedField then iroot(r, n) == nthRoot(r, n)::F else iroot0: (R, Z) -> F if R has RadicalCategory then if R has imaginary:() -> R then iroot(r, n) == nthRoot(r, n)::F else iroot(r, n) == odd? n or not before?(r,0) => nthRoot(r, n)::F iroot0(r, n) else iroot(r, n) == iroot0(r, n) iroot0(r, n) == rec := rroot(r, n::NonNegativeInteger) rec.coef * hackroot(rec.radicand, rec.exponent) definingPolynomial x == (r := retractIfCan(x)@Union(K, "failed")) case K => is?(k := r::K, opalg) => first argument k is?(k, oproot) => dumvar ** retract(second argument k)@Z - first argument k dumvar - x dumvar - x minPoly k == is?(k, opalg) => numer univariate(first argument k, retract(second argument k)@K) is?(k, oproot) => monomial(1,retract(second argument k)@Z :: NonNegativeInteger) - first(argument k)::UP monomial(1, 1) - k::F::UP evaluate(oproot, inroot)$BasicOperatorFunctions1(F) derivative(oproot, [dvroot, lzero]) else -- R is not retractable to Integer droot l == x := first(l)::OutputForm (n := second l) = 2::F => root x root(x, n::OutputForm) minPoly k == is?(k, opalg) => numer univariate(first argument k, retract(second argument k)@K) monomial(1, 1) - k::F::UP setProperty(oproot, SPECIALDISP, droot@(List F -> OutputForm) pretend None) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. --Copyright (C) 2007-2009, Gabriel Dos Reis. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> -- SPAD files for the functional world should be compiled in the -- following order: -- -- op kl fspace ALGFUNC expr <<category ACF AlgebraicallyClosedField>> <<category ACFS AlgebraicallyClosedFunctionSpace>> <<package AF AlgebraicFunction>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}