\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra algfact.spad} \author{Patrizia Gianni, Manuel Bronstein} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package IALGFACT InnerAlgFactor} <<package IALGFACT InnerAlgFactor>>= )abbrev package IALGFACT InnerAlgFactor ++ Factorisation in a simple algebraic extension ++ Author: Patrizia Gianni ++ Date Created: ??? ++ Date Last Updated: 20 Jul 1988 ++ Description: ++ Factorization of univariate polynomials with coefficients in an ++ algebraic extension of a field over which we can factor UP's; ++ Keywords: factorization, algebraic extension, univariate polynomial InnerAlgFactor(F, UP, AlExt, AlPol): Exports == Implementation where F : Field UP : UnivariatePolynomialCategory F AlPol: UnivariatePolynomialCategory AlExt AlExt : Join(Field, CharacteristicZero, MonogenicAlgebra(F,UP)) NUP ==> SparseUnivariatePolynomial UP N ==> NonNegativeInteger Z ==> Integer FR ==> Factored UP UPCF2 ==> UnivariatePolynomialCategoryFunctions2 Exports ==> with factor: (AlPol, UP -> FR) -> Factored AlPol ++ factor(p, f) returns a prime factorisation of p; ++ f is a factorisation map for elements of UP; Implementation ==> add pnorm : AlPol -> UP convrt : AlPol -> NUP change : UP -> AlPol perturbfactor: (AlPol, Z, UP -> FR) -> List AlPol irrfactor : (AlPol, Z, UP -> FR) -> List AlPol perturbfactor(f, k, fact) == pol := monomial(1$AlExt,1)- monomial(reduce monomial(k::F,1)$UP ,0) newf := elt(f, pol) lsols := irrfactor(newf, k, fact) pol := monomial(1, 1) + monomial(reduce monomial(k::F,1)$UP,0) [elt(pp, pol) for pp in lsols] --- factorize the square-free parts of f --- irrfactor(f, k, fact) == degree(f) =$N 1 => [f] newf := f nn := pnorm f --newval:RN:=1 --pert:=false --if ^ SqFr? nn then -- pert:=true -- newterm:=perturb(f) -- newf:=newterm.ppol -- newval:=newterm.pval -- nn:=newterm.nnorm listfact := factors fact nn #listfact =$N 1 => first(listfact).exponent =$Z 1 => [f] perturbfactor(f, k + 1, fact) listerm:List(AlPol):= [] for pelt in listfact repeat g := gcd(change(pelt.factor), newf) newf := (newf exquo g)::AlPol listerm := pelt.exponent =$Z 1 => cons(g, listerm) append(perturbfactor(g, k + 1, fact), listerm) listerm factor(f, fact) == sqf := squareFree f unit(sqf) * _*/[_*/[primeFactor(pol, sqterm.exponent) for pol in irrfactor(sqterm.factor, 0, fact)] for sqterm in factors sqf] p := definingPolynomial()$AlExt newp := map(#1::UP, p)$UPCF2(F, UP, UP, NUP) pnorm q == resultant(convrt q, newp) change q == map(coerce, q)$UPCF2(F,UP,AlExt,AlPol) convrt q == swap(map(lift, q)$UPCF2(AlExt, AlPol, UP, NUP))$CommuteUnivariatePolynomialCategory(F, UP, NUP) @ \section{package SAEFACT SimpleAlgebraicExtensionAlgFactor} <<package SAEFACT SimpleAlgebraicExtensionAlgFactor>>= )abbrev package SAEFACT SimpleAlgebraicExtensionAlgFactor ++ Factorisation in a simple algebraic extension; ++ Author: Patrizia Gianni ++ Date Created: ??? ++ Date Last Updated: ??? ++ Description: ++ Factorization of univariate polynomials with coefficients in an ++ algebraic extension of the rational numbers (\spadtype{Fraction Integer}). ++ Keywords: factorization, algebraic extension, univariate polynomial SimpleAlgebraicExtensionAlgFactor(UP,SAE,UPA):Exports==Implementation where UP : UnivariatePolynomialCategory Fraction Integer SAE : Join(Field, CharacteristicZero, MonogenicAlgebra(Fraction Integer, UP)) UPA: UnivariatePolynomialCategory SAE Exports ==> with factor: UPA -> Factored UPA ++ factor(p) returns a prime factorisation of p. Implementation ==> add factor q == factor(q, factor$RationalFactorize(UP) )$InnerAlgFactor(Fraction Integer, UP, SAE, UPA) @ \section{package RFFACT RationalFunctionFactor} <<package RFFACT RationalFunctionFactor>>= )abbrev package RFFACT RationalFunctionFactor ++ Factorisation in UP FRAC POLY INT ++ Author: Patrizia Gianni ++ Date Created: ??? ++ Date Last Updated: ??? ++ Description: ++ Factorization of univariate polynomials with coefficients which ++ are rational functions with integer coefficients. RationalFunctionFactor(UP): Exports == Implementation where UP: UnivariatePolynomialCategory Fraction Polynomial Integer SE ==> Symbol P ==> Polynomial Integer RF ==> Fraction P UPCF2 ==> UnivariatePolynomialCategoryFunctions2 Exports ==> with factor: UP -> Factored UP ++ factor(p) returns a prime factorisation of p. Implementation ==> add likuniv: (P, SE, P) -> UP dummy := new()$SE likuniv(p, x, d) == map(#1 / d, univariate(p, x))$UPCF2(P,SparseUnivariatePolynomial P, RF, UP) factor p == d := denom(q := elt(p,dummy::P :: RF)) map(likuniv(#1,dummy,d), factor(numer q)$MultivariateFactorize(SE, IndexedExponents SE,Integer,P))$FactoredFunctions2(P, UP) @ \section{package SAERFFC SAERationalFunctionAlgFactor} <<package SAERFFC SAERationalFunctionAlgFactor>>= )abbrev package SAERFFC SAERationalFunctionAlgFactor ++ Factorisation in UP SAE FRAC POLY INT ++ Author: Patrizia Gianni ++ Date Created: ??? ++ Date Last Updated: ??? ++ Description: ++ Factorization of univariate polynomials with coefficients in an ++ algebraic extension of \spadtype{Fraction Polynomial Integer}. ++ Keywords: factorization, algebraic extension, univariate polynomial SAERationalFunctionAlgFactor(UP, SAE, UPA): Exports == Implementation where UP : UnivariatePolynomialCategory Fraction Polynomial Integer SAE : Join(Field, CharacteristicZero, MonogenicAlgebra(Fraction Polynomial Integer, UP)) UPA: UnivariatePolynomialCategory SAE Exports ==> with factor: UPA -> Factored UPA ++ factor(p) returns a prime factorisation of p. Implementation ==> add factor q == factor(q, factor$RationalFunctionFactor(UP) )$InnerAlgFactor(Fraction Polynomial Integer, UP, SAE, UPA) @ \section{package ALGFACT AlgFactor} <<package ALGFACT AlgFactor>>= )abbrev package ALGFACT AlgFactor ++ Factorization of UP AN; ++ Author: Manuel Bronstein ++ Date Created: ??? ++ Date Last Updated: ??? ++ Description: ++ Factorization of univariate polynomials with coefficients in ++ \spadtype{AlgebraicNumber}. AlgFactor(UP): Exports == Implementation where UP: UnivariatePolynomialCategory AlgebraicNumber N ==> NonNegativeInteger Z ==> Integer Q ==> Fraction Integer AN ==> AlgebraicNumber K ==> Kernel AN UPQ ==> SparseUnivariatePolynomial Q SUP ==> SparseUnivariatePolynomial AN FR ==> Factored UP Exports ==> with factor: (UP, List AN) -> FR ++ factor(p, [a1,...,an]) returns a prime factorisation of p ++ over the field generated by its coefficients and a1,...,an. factor: UP -> FR ++ factor(p) returns a prime factorisation of p ++ over the field generated by its coefficients. split : UP -> FR ++ split(p) returns a prime factorisation of p ++ over its splitting field. doublyTransitive?: UP -> Boolean ++ doublyTransitive?(p) is true if p is irreducible over ++ over the field K generated by its coefficients, and ++ if \spad{p(X) / (X - a)} is irreducible over ++ \spad{K(a)} where \spad{p(a) = 0}. Implementation ==> add import PolynomialCategoryQuotientFunctions(IndexedExponents K, K, Z, SparseMultivariatePolynomial(Z, K), AN) UPCF2 ==> UnivariatePolynomialCategoryFunctions2 fact : (UP, List K) -> FR ifactor : (SUP, List K) -> Factored SUP extend : (UP, Z) -> FR allk : List AN -> List K downpoly: UP -> UPQ liftpoly: UPQ -> UP irred? : UP -> Boolean allk l == removeDuplicates concat [kernels x for x in l] liftpoly p == map(#1::AN, p)$UPCF2(Q, UPQ, AN, UP) downpoly p == map(retract(#1)@Q, p)$UPCF2(AN, UP ,Q, UPQ) ifactor(p,l) == (fact(p pretend UP, l)) pretend Factored(SUP) factor p == fact(p, allk coefficients p) factor(p, l) == fact(p, allk removeDuplicates concat(l, coefficients p)) split p == fp := factor p unit(fp) * _*/[extend(fc.factor, fc.exponent) for fc in factors fp] extend(p, n) == -- one? degree p => primeFactor(p, n) (degree p = 1) => primeFactor(p, n) q := monomial(1, 1)$UP - zeroOf(p pretend SUP)::UP primeFactor(q, n) * split((p exquo q)::UP) ** (n::N) doublyTransitive? p == irred? p and irred?((p exquo (monomial(1, 1)$UP - zeroOf(p pretend SUP)::UP))::UP) irred? p == fp := factor p -- one? numberOfFactors fp and one? nthExponent(fp, 1) (numberOfFactors fp = 1) and (nthExponent(fp, 1) = 1) fact(p, l) == -- one? degree p => primeFactor(p, 1) (degree p = 1) => primeFactor(p, 1) empty? l => dr := factor(downpoly p)$RationalFactorize(UPQ) (liftpoly unit dr) * _*/[primeFactor(liftpoly dc.factor,dc.exponent) for dc in factors dr] q := minPoly(alpha := "max"/l)$AN newl := remove(alpha = #1, l) sae := SimpleAlgebraicExtension(AN, SUP, q) ups := SparseUnivariatePolynomial sae fr := factor(map(reduce univariate(#1, alpha, q), p)$UPCF2(AN, UP, sae, ups), ifactor(#1, newl))$InnerAlgFactor(AN, SUP, sae, ups) newalpha := alpha::AN map((lift(#1)$sae) newalpha, unit fr)$UPCF2(sae, ups, AN, UP) * _*/[primeFactor(map((lift(#1)$sae) newalpha, fc.factor)$UPCF2(sae, ups, AN, UP), fc.exponent) for fc in factors fr] @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package IALGFACT InnerAlgFactor>> <<package SAEFACT SimpleAlgebraicExtensionAlgFactor>> <<package RFFACT RationalFunctionFactor>> <<package SAERFFC SAERationalFunctionAlgFactor>> <<package ALGFACT AlgFactor>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}