\documentclass{article} \usepackage{open-axiom} \begin{document} \title{src/algebra algext.spad} \author{Barry Trager, Manuel Bronstein, Clifton Williamson} \maketitle \begin{abstract} \end{abstract} \tableofcontents \eject \section{domain SAE SimpleAlgebraicExtension} <<domain SAE SimpleAlgebraicExtension>>= import UnivariatePolynomialCategory import MonogenicAlgebra )abbrev domain SAE SimpleAlgebraicExtension ++ Algebraic extension of a ring by a single polynomial ++ Author: Barry Trager, Manuel Bronstein, Clifton Williamson ++ Date Created: 1986 ++ Date Last Updated: 9 May 1994 ++ Description: ++ Domain which represents simple algebraic extensions of arbitrary ++ rings. The first argument to the domain, R, is the underlying ring, ++ the second argument is a domain of univariate polynomials over K, ++ while the last argument specifies the defining minimal polynomial. ++ The elements of the domain are canonically represented as polynomials ++ of degree less than that of the minimal polynomial with coefficients ++ in R. The second argument is both the type of the third argument and ++ the underlying representation used by \spadtype{SAE} itself. ++ Keywords: ring, algebraic, extension ++ Example: )r SAE INPUT SimpleAlgebraicExtension(R:CommutativeRing, UP:UnivariatePolynomialCategory R, M:UP): MonogenicAlgebra(R, UP) == add --sqFr(pb): FactorS(Poly) from UnivPolySquareFree(Poly) --degree(M) > 0 and M must be monic if R is not a field. if (r := recip leadingCoefficient M) case "failed" then error "Modulus cannot be made monic" Rep := UP x,y :$ c: R mkDisc : Boolean -> Void mkDiscMat: Boolean -> Void M := r::R * M d := degree M d1 := subtractIfCan(d,1)::NonNegativeInteger discmat:Matrix(R) := zero(d, d) nodiscmat?:Reference(Boolean) := ref true disc:Reference(R) := ref 0 nodisc?:Reference(Boolean) := ref true bsis := [monomial(1, i)$Rep for i in 0..d1]$Vector(Rep) if R has Finite then size == size()$R ** d random == represents([random()$R for i in 0..d1]) 0 == 0$Rep 1 == 1$Rep c * x == c *$Rep x n:Integer * x == n *$Rep x coerce(n:Integer):$ == coerce(n)$Rep coerce(c) == monomial(c,0)$Rep coerce(x):OutputForm == coerce(x)$Rep lift(x) == x pretend Rep reduce(p:UP):$ == (monicDivide(p,M)$Rep).remainder x = y == x =$Rep y x + y == x +$Rep y - x == -$Rep x x * y == reduce((x *$Rep y) pretend UP) coordinates(x) == [coefficient(lift(x),i) for i in 0..d1] represents(vect) == +/[monomial(vect.(i+1),i) for i in 0..d1] definingPolynomial() == M characteristic == characteristic$R rank() == d::PositiveInteger basis() == copy(bsis@Vector(Rep) pretend Vector($)) --!! I inserted 'copy' in the definition of 'basis' -- cjw 7/19/91 if R has Field then minimalPolynomial x == squareFreePart characteristicPolynomial x if R has Field then coordinates(x:$,bas: Vector $) == (m := inverse transpose coordinates bas) case "failed" => error "coordinates: second argument must be a basis" (m :: Matrix R) * coordinates(x) else if R has IntegralDomain then coordinates(x:$,bas: Vector $) == -- we work over the quotient field of R to invert a matrix qf := Fraction R imatqf := InnerMatrixQuotientFieldFunctions(R,Vector R,Vector R,_ Matrix R,qf,Vector qf,Vector qf,Matrix qf) mat := transpose coordinates bas (m := inverse(mat)$imatqf) case "failed" => error "coordinates: second argument must be a basis" coordsQF := map(#1 :: qf,coordinates x)$VectorFunctions2(R,qf) -- here are the coordinates as elements of the quotient field: vecQF := (m :: Matrix qf) * coordsQF vec : Vector R := new(d,0) for i in 1..d repeat xi := qelt(vecQF,i) denom(xi) = 1 => qsetelt!(vec,i,numer xi) error "coordinates: coordinates are not integral over ground ring" vec reducedSystem(m:Matrix $):Matrix(R) == reducedSystem(map(lift, m)$MatrixCategoryFunctions2($, Vector $, Vector $, Matrix $, UP, Vector UP, Vector UP, Matrix UP)) reducedSystem(m:Matrix $, v:Vector $):Record(mat:Matrix R,vec:Vector R) == reducedSystem(map(lift, m)$MatrixCategoryFunctions2($, Vector $, Vector $, Matrix $, UP, Vector UP, Vector UP, Matrix UP), map(lift, v)$VectorFunctions2($, UP)) discriminant() == if nodisc?() then mkDisc false disc() mkDisc b == nodisc?() := b disc() := discriminant M traceMatrix() == if nodiscmat?() then mkDiscMat false discmat mkDiscMat b == nodiscmat?() := b mr := minRowIndex discmat; mc := minColIndex discmat for i in 0..d1 repeat for j in 0..d1 repeat qsetelt!(discmat,mr + i,mc + j,trace reduce monomial(1,i + j)) trace x == --this could be coded perhaps more efficiently xn := x; ans := coefficient(lift xn, 0) for n in 1..d1 repeat (xn := generator() * xn; ans := coefficient(lift xn, n) + ans) ans if R has Finite then index k == i:Integer := k rem size() p:Integer := size()$R ans:$ := 0 for j in 0.. while i > 0 repeat h := i rem p -- index(p) = 0$R if h ~= 0 then -- here was a bug: "index" instead of -- "coerce", otherwise it wouldn't work for -- Rings R where "coerce: I-> R" is not surjective a := index(h :: PositiveInteger)$R ans := ans + reduce monomial(a, j) i := i quo p ans lookup(z : $) : PositiveInteger == -- z = index lookup z, n = lookup index n -- the answer is merely the Horner evaluation of the -- representation with the size of R (as integers). zero?(z) => size()$% pretend PositiveInteger p : Integer := size()$R co : Integer := lookup(leadingCoefficient z)$R n : NonNegativeInteger := degree(z) while not zero?(z := reductum z) repeat co := co * p ** ((n - (n := degree z)) pretend NonNegativeInteger) + lookup(leadingCoefficient z)$R n = 0 => co pretend PositiveInteger (co * p ** n) pretend PositiveInteger -- -- KA:=BasicPolynomialFunctions(Poly) -- minPoly(x) == -- ffe:= SqFr(resultant(M::KA, KA.var - lift(x)::KA)).fs.first -- ffe.flag = "SQFR" => ffe.f -- mdeg:= (degree(ffe.f) // K.characteristic)::Integer -- mat:= Zero()::Matrix<mdeg+1,deg+mdeg+1>(K) -- xi:=L.1; setelt(mat,1,1,K.1); setelt(mat,1,(deg+1),K.1) -- for i in 1..mdeg repeat -- xi:= x * xi; xp:= lift(xi) -- while xp ~= KA.0 repeat -- setelt(mat,(mdeg+1),(degree(xp)+1),LeadingCoef(xp)) -- xp:=reductum(xp) -- setelt(mat,(mdeg+1),(deg+i+1),K.1) -- EchelonLastRow(mat) -- if and/(elt(mat,(i+1),j) = K.0 for j in 1..deg) -- then return unitNormal(+/(elt(mat,(i+1),(deg+j+1))*(B::KA)**j -- for j in 0..i)).a -- ffe.f @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. --Copyright (C) 2007-2010, Gabriel Dos Reis. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain SAE SimpleAlgebraicExtension>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}