\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{src/algebra algcat.spad}
\author{Barry Trager, Claude Quitte, Manuel Bronstein}
\maketitle

\begin{abstract}
\end{abstract}
\tableofcontents
\eject

\section{category FINRALG FiniteRankAlgebra}

<<category FINRALG FiniteRankAlgebra>>=
import CommutativeRing
import Algebra
import UnivariatePolynomialCategory
import PositiveInteger
import Vector
import Matrix
)abbrev category FINRALG FiniteRankAlgebra
++ Author: Barry Trager
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A FiniteRankAlgebra is an algebra over a commutative ring R which
++ is a free R-module of finite rank.

FiniteRankAlgebra(R:CommutativeRing, UP:UnivariatePolynomialCategory R):
 Category == Algebra R with
    rank                    : () -> PositiveInteger
      ++ rank() returns the rank of the algebra.
    regularRepresentation   : (% , Vector %) -> Matrix R
      ++ regularRepresentation(a,basis) returns the matrix of the
      ++ linear map defined by left multiplication by \spad{a} with respect
      ++ to the basis \spad{basis}.
    trace                   : %  -> R
      ++ trace(a) returns the trace of the regular representation
      ++ of \spad{a} with respect to any basis.
    norm                    : %  -> R
      ++ norm(a) returns the determinant of the regular representation
      ++ of \spad{a} with respect to any basis.
    coordinates             : (%, Vector %) -> Vector R
      ++ coordinates(a,basis) returns the coordinates of \spad{a} with
      ++ respect to the basis \spad{basis}.
    coordinates             : (Vector %, Vector %) -> Matrix R
      ++ coordinates([v1,...,vm], basis) returns the coordinates of the
      ++ vi's with to the basis \spad{basis}.  The coordinates of vi are
      ++ contained in the ith row of the matrix returned by this
      ++ function.
    represents              : (Vector R, Vector %) -> %
      ++ represents([a1,..,an],[v1,..,vn]) returns \spad{a1*v1 + ... + an*vn}.
    discriminant            : Vector % -> R
      ++ discriminant([v1,..,vn]) returns
      ++ \spad{determinant(traceMatrix([v1,..,vn]))}.
    traceMatrix             : Vector % -> Matrix R
      ++ traceMatrix([v1,..,vn]) is the n-by-n matrix ( Tr(vi * vj) )
    characteristicPolynomial: % -> UP
      ++ characteristicPolynomial(a) returns the characteristic
      ++ polynomial of the regular representation of \spad{a} with respect
      ++ to any basis.
    if R has Field then minimalPolynomial : % -> UP
      ++ minimalPolynomial(a) returns the minimal polynomial of \spad{a}.
    if R has CharacteristicZero then CharacteristicZero
    if R has CharacteristicNonZero then CharacteristicNonZero

  add

    discriminant v == determinant traceMatrix v

    coordinates(v:Vector %, b:Vector %) ==
      m := new(#v, #b, 0)$Matrix(R)
      for i in minIndex v .. maxIndex v for j in minRowIndex m .. repeat
        setRow!(m, j, coordinates(qelt(v, i), b))
      m

    represents(v, b) ==
      m := minIndex v - 1
      +/[v(i+m) * b(i+m) for i in 1..rank()]

    traceMatrix v ==
      matrix [[trace(v.i*v.j) for j in minIndex v..maxIndex v]$List(R)
               for i in minIndex v .. maxIndex v]$List(List R)

    regularRepresentation(x, b) ==
      m := minIndex b - 1
      matrix
       [members coordinates(x*b(i+m),b) for i in 1..rank()]$List(List R)

@

\section{category FRAMALG FramedAlgebra}

<<category FRAMALG FramedAlgebra>>=
import CommutativeRing
import UnivariatePolynomialCategory
import Vector
)abbrev category FRAMALG FramedAlgebra
++ Author: Barry Trager
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A \spadtype{FramedAlgebra} is a \spadtype{FiniteRankAlgebra} together
++ with a fixed R-module basis.

FramedAlgebra(R:CommutativeRing, UP:UnivariatePolynomialCategory R):
 Category == FiniteRankAlgebra(R, UP) with
    --operations
      basis                 : () -> Vector %
        ++ basis() returns the fixed R-module basis.
      coordinates           : % -> Vector R
        ++ coordinates(a) returns the coordinates of \spad{a} with respect to the
        ++ fixed R-module basis.
      coordinates           : Vector % -> Matrix R
        ++ coordinates([v1,...,vm]) returns the coordinates of the
        ++ vi's with to the fixed basis.  The coordinates of vi are
        ++ contained in the ith row of the matrix returned by this
        ++ function.
      represents            : Vector R -> %
        ++ represents([a1,..,an]) returns \spad{a1*v1 + ... + an*vn}, where
        ++ v1, ..., vn are the elements of the fixed basis.
      convert               : % -> Vector R
        ++ convert(a) returns the coordinates of \spad{a} with respect to the
        ++ fixed R-module basis.
      convert               : Vector R -> %
        ++ convert([a1,..,an]) returns \spad{a1*v1 + ... + an*vn}, where
        ++ v1, ..., vn are the elements of the fixed basis.
      traceMatrix           : () -> Matrix R
        ++ traceMatrix() is the n-by-n matrix ( \spad{Tr(vi * vj)} ), where
        ++ v1, ..., vn are the elements of the fixed basis.
      discriminant          : () -> R
        ++ discriminant() = determinant(traceMatrix()).
      regularRepresentation : % -> Matrix R
        ++ regularRepresentation(a) returns the matrix of the linear
        ++ map defined by left multiplication by \spad{a} with respect
        ++ to the fixed basis.
    --attributes
      --separable <=> discriminant() ~= 0
  add
   convert(x:%):Vector(R)  == coordinates(x)
   convert(v:Vector R):%   == represents(v)
   traceMatrix()           == traceMatrix basis()
   discriminant()          == discriminant basis()
   coordinates(x:%)        == coordinates(x, basis())
   represents x            == represents(x, basis())

   coordinates(v:Vector %) ==
     m := new(#v, rank(), 0)$Matrix(R)
     for i in minIndex v .. maxIndex v for j in minRowIndex m .. repeat
       setRow!(m, j, coordinates qelt(v, i))
     m

   regularRepresentation x ==
     m := new(n := rank(), n, 0)$Matrix(R)
     b := basis()
     for i in minIndex b .. maxIndex b for j in minRowIndex m .. repeat
       setRow!(m, j, coordinates(x * qelt(b, i)))
     m

   characteristicPolynomial x ==
      mat00 := (regularRepresentation x)
      mat0 := map(#1 :: UP,mat00)$MatrixCategoryFunctions2(R, Vector R,
                  Vector R, Matrix R, UP, Vector UP,Vector UP, Matrix UP)
      mat1 : Matrix UP := scalarMatrix(rank(),monomial(1,1)$UP)
      determinant(mat1 - mat0)

   if R has Field then
    -- depends on the ordering of results from nullSpace, also see FFP
      minimalPolynomial(x:%):UP ==
        y:%:=1
        n:=rank()
        m:Matrix R:=zero(n,n+1)
        for i in 1..n+1 repeat
          setColumn!(m,i,coordinates(y))
          y:=y*x
        v:=first nullSpace(m)
        +/[monomial(v.(i+1),i) for i in 0..#v-1]

@

\section{category MONOGEN MonogenicAlgebra}

<<category MONOGEN MonogenicAlgebra>>=
import CommutativeRing
import UnivariatePolynomialCategory
import FramedAlgebra
import FullyRetractableTo
import FullyLinearlyExplicitRingOver
)abbrev category MONOGEN MonogenicAlgebra
++ Author: Barry Trager
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A \spadtype{MonogenicAlgebra} is an algebra of finite rank which
++ can be generated by a single element.

MonogenicAlgebra(R:CommutativeRing, UP:UnivariatePolynomialCategory R):
 Category ==
    Join(FramedAlgebra(R, UP), CommutativeRing, ConvertibleTo UP,
              FullyRetractableTo R, FullyLinearlyExplicitRingOver R) with
      generator         : () -> %
        ++ generator() returns the generator for this domain.
      definingPolynomial: () -> UP
        ++ definingPolynomial() returns the minimal polynomial which
        ++ \spad{generator()} satisfies.
      reduce            : UP -> %
        ++ reduce(up) converts the univariate polynomial up to an algebra
        ++ element, reducing by the \spad{definingPolynomial()} if necessary.
      convert           : UP -> %
        ++ convert(up) converts the univariate polynomial up to an algebra
        ++ element, reducing by the \spad{definingPolynomial()} if necessary.
      lift              : % -> UP
        ++ lift(z) returns a minimal degree univariate polynomial up such that
        ++ \spad{z=reduce up}.
      if R has Finite then Finite
      if R has Field then
        Field
        DifferentialExtension R
        reduce               : Fraction UP -> Union(%, "failed")
          ++ reduce(frac) converts the fraction frac to an algebra element.
        derivationCoordinates: (Vector %, R -> R) -> Matrix R
          ++ derivationCoordinates(b, ') returns M such that \spad{b' = M b}.
      if R has FiniteFieldCategory then FiniteFieldCategory
  add
   convert(x:%):UP == lift x
   convert(p:UP):% == reduce p
   generator()     == reduce monomial(1, 1)$UP
   norm x          == resultant(definingPolynomial(), lift x)
   retract(x:%):R  == retract lift x
   retractIfCan(x:%):Union(R, "failed") == retractIfCan lift x

   basis() ==
     [reduce monomial(1,i)$UP for i in 0..(rank()-1)::NonNegativeInteger]

   characteristicPolynomial(x:%):UP ==
     characteristicPolynomial(x)$CharacteristicPolynomialInMonogenicalAlgebra(R,UP,%)

   if R has Finite then
     size()   == size()$R ** rank()
     random() == represents [random()$R for i in 1..rank()]$Vector(R)

   if R has Field then
     reduce(x:Fraction UP) == reduce(numer x) exquo reduce(denom x)

     differentiate(x:%, d:R -> R) ==
       p := definingPolynomial()
       yprime := - reduce(map(d, p)) / reduce(differentiate p)
       reduce(map(d, lift x)) + yprime * reduce differentiate lift x

     derivationCoordinates(b, d) ==
       coordinates(map(differentiate(#1, d), b), b)

     recip x ==
       (bc := extendedEuclidean(lift x, definingPolynomial(), 1))
                                                case "failed" => "failed"
       reduce(bc.coef1)

@

\section{package CPIMA CharacteristicPolynomialInMonogenicalAlgebra}

<<package CPIMA CharacteristicPolynomialInMonogenicalAlgebra>>=
import CommutativeRing
import UnivariatePolynomialCategory
import MonogenicAlgebra
)abbrev package CPIMA CharacteristicPolynomialInMonogenicalAlgebra
++ Author: Claude Quitte
++ Date Created: 10/12/93
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package implements characteristicPolynomials for monogenic algebras
++ using resultants
CharacteristicPolynomialInMonogenicalAlgebra(R : CommutativeRing,
    PolR : UnivariatePolynomialCategory(R),
    E : MonogenicAlgebra(R, PolR)): with
     characteristicPolynomial : E -> PolR
	++ characteristicPolynomial(e) returns the characteristic polynomial 
	++ of e using resultants

  == add
    Pol ==> SparseUnivariatePolynomial

    import UnivariatePolynomialCategoryFunctions2(R, PolR, PolR, Pol(PolR))
    XtoY(Q : PolR) : Pol(PolR) == map(monomial(#1, 0), Q)

    P : Pol(PolR) := XtoY(definingPolynomial()$E)
    X : Pol(PolR) := monomial(monomial(1, 1)$PolR, 0)

    characteristicPolynomial(x : E) : PolR ==
       Qx : PolR := lift(x)
       -- on utilise le fait que resultant_Y (P(Y), X - Qx(Y))
       return resultant(P, X - XtoY(Qx))

@

\section{package NORMMA NormInMonogenicAlgebra}

<<package NORMMA NormInMonogenicAlgebra>>=
import GcdDomain
import UnivariatePolynomialCategory
import MonogenicAlgebra
)abbrev package NORMMA NormInMonogenicAlgebra
++ Author: Manuel Bronstein
++ Date Created: 23 February 1995
++ Date Last Updated: 23 February 1995
++ Basic Functions: norm
++ Description:
++ This package implements the norm of a polynomial with coefficients
++ in a monogenic algebra (using resultants)

NormInMonogenicAlgebra(R, PolR, E, PolE): Exports == Implementation where
  R: GcdDomain
  PolR: UnivariatePolynomialCategory R
  E: MonogenicAlgebra(R, PolR)
  PolE: UnivariatePolynomialCategory E

  SUP ==> SparseUnivariatePolynomial

  Exports ==> with
    norm: PolE -> PolR
      ++ norm q returns the norm of q,
      ++ i.e. the product of all the conjugates of q.

  Implementation ==> add
    import UnivariatePolynomialCategoryFunctions2(R, PolR, PolR, SUP PolR)

    PolR2SUP: PolR -> SUP PolR
    PolR2SUP q == map(#1::PolR, q)

    defpol := PolR2SUP(definingPolynomial()$E)

    norm q ==
      p:SUP PolR := 0
      while q ~= 0 repeat
        p := p + monomial(1,degree q)$PolR * PolR2SUP lift leadingCoefficient q
        q := reductum q
      primitivePart resultant(p, defpol)

@

\section{License}

<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<category FINRALG FiniteRankAlgebra>>
<<category FRAMALG FramedAlgebra>>
<<category MONOGEN MonogenicAlgebra>>
<<package CPIMA CharacteristicPolynomialInMonogenicalAlgebra>>
<<package NORMMA NormInMonogenicAlgebra>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}