\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra aggcat.spad} \author{Michael Monagan, Manuel Bronstein, Richard Jenks, Stephen Watt} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{category AGG Aggregate} <<category AGG Aggregate>>= )abbrev category AGG Aggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ The notion of aggregate serves to model any data structure aggregate, ++ designating any collection of objects, ++ with heterogenous or homogeneous members, ++ with a finite or infinite number ++ of members, explicitly or implicitly represented. ++ An aggregate can in principle ++ represent everything from a string of characters to abstract sets such ++ as "the set of x satisfying relation {\em r(x)}" ++ An attribute \spadatt{finiteAggregate} is used to assert that a domain ++ has a finite number of elements. Aggregate: Category == Type with eq?: (%,%) -> Boolean ++ eq?(u,v) tests if u and v are same objects. copy: % -> % ++ copy(u) returns a top-level (non-recursive) copy of u. ++ Note: for collections, \axiom{copy(u) == [x for x in u]}. empty: () -> % ++ empty()$D creates an aggregate of type D with 0 elements. ++ Note: The {\em $D} can be dropped if understood by context, ++ e.g. \axiom{u: D := empty()}. empty?: % -> Boolean ++ empty?(u) tests if u has 0 elements. less?: (%,NonNegativeInteger) -> Boolean ++ less?(u,n) tests if u has less than n elements. more?: (%,NonNegativeInteger) -> Boolean ++ more?(u,n) tests if u has greater than n elements. size?: (%,NonNegativeInteger) -> Boolean ++ size?(u,n) tests if u has exactly n elements. sample: constant -> % ++ sample yields a value of type % if % has finiteAggregate then "#": % -> NonNegativeInteger ++ # u returns the number of items in u. add eq?(a,b) == EQ(a,b)$Lisp sample() == empty() if % has finiteAggregate then empty? a == #a = 0 less?(a,n) == #a < n more?(a,n) == #a > n size?(a,n) == #a = n @ \section{category HOAGG HomogeneousAggregate} <<category HOAGG HomogeneousAggregate>>= )abbrev category HOAGG HomogeneousAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991, May 1995 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A homogeneous aggregate is an aggregate of elements all of the ++ same type. ++ In the current system, all aggregates are homogeneous. ++ Two attributes characterize classes of aggregates. ++ Aggregates from domains with attribute \spadatt{finiteAggregate} ++ have a finite number of members. ++ Those with attribute \spadatt{shallowlyMutable} allow an element ++ to be modified or updated without changing its overall value. HomogeneousAggregate(S:Type): Category == Aggregate with if S has CoercibleTo(OutputForm) then CoercibleTo(OutputForm) if S has SetCategory then SetCategory if S has SetCategory then if S has Evalable S then Evalable S map : (S->S,%) -> % ++ map(f,u) returns a copy of u with each element x replaced by f(x). ++ For collections, \axiom{map(f,u) = [f(x) for x in u]}. if % has shallowlyMutable then map_!: (S->S,%) -> % ++ map!(f,u) destructively replaces each element x of u by \axiom{f(x)}. if % has finiteAggregate then any?: (S->Boolean,%) -> Boolean ++ any?(p,u) tests if \axiom{p(x)} is true for any element x of u. ++ Note: for collections, ++ \axiom{any?(p,u) = reduce(or,map(f,u),false,true)}. every?: (S->Boolean,%) -> Boolean ++ every?(f,u) tests if p(x) is true for all elements x of u. ++ Note: for collections, ++ \axiom{every?(p,u) = reduce(and,map(f,u),true,false)}. count: (S->Boolean,%) -> NonNegativeInteger ++ count(p,u) returns the number of elements x in u ++ such that \axiom{p(x)} is true. For collections, ++ \axiom{count(p,u) = reduce(+,[1 for x in u | p(x)],0)}. parts: % -> List S ++ parts(u) returns a list of the consecutive elements of u. ++ For collections, \axiom{parts([x,y,...,z]) = (x,y,...,z)}. members: % -> List S ++ members(u) returns a list of the consecutive elements of u. ++ For collections, \axiom{parts([x,y,...,z]) = (x,y,...,z)}. if S has SetCategory then count: (S,%) -> NonNegativeInteger ++ count(x,u) returns the number of occurrences of x in u. ++ For collections, \axiom{count(x,u) = reduce(+,[x=y for y in u],0)}. member?: (S,%) -> Boolean ++ member?(x,u) tests if x is a member of u. ++ For collections, ++ \axiom{member?(x,u) = reduce(or,[x=y for y in u],false)}. add if S has Evalable S then eval(u:%,l:List Equation S):% == map(eval(#1,l),u) if % has finiteAggregate then #c == # parts c any?(f, c) == _or/[f x for x in parts c] every?(f, c) == _and/[f x for x in parts c] count(f:S -> Boolean, c:%) == _+/[1 for x in parts c | f x] members x == parts x if S has SetCategory then count(s:S, x:%) == count(s = #1, x) member?(e, c) == any?(e = #1,c) x = y == size?(x, #y) and _and/[a = b for a in parts x for b in parts y] if S has CoercibleTo(OutputForm) then coerce(x:%):OutputForm == bracket commaSeparate [a::OutputForm for a in parts x]$List(OutputForm) @ \section{HOAGG.lsp BOOTSTRAP} {\bf HOAGG} depends on a chain of files. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf HOAGG} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf HOAGG.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <<HOAGG.lsp BOOTSTRAP>>= (/VERSIONCHECK 2) (DEFPARAMETER |HomogeneousAggregate;CAT| 'NIL) (DEFPARAMETER |HomogeneousAggregate;AL| 'NIL) (DEFUN |HomogeneousAggregate| (#0=#:G1399) (LET (#1=#:G1400) (COND ((SETQ #1# (|assoc| (|devaluate| #0#) |HomogeneousAggregate;AL|)) (CDR #1#)) (T (SETQ |HomogeneousAggregate;AL| (|cons5| (CONS (|devaluate| #0#) (SETQ #1# (|HomogeneousAggregate;| #0#))) |HomogeneousAggregate;AL|)) #1#)))) (DEFUN |HomogeneousAggregate;| (|t#1|) (PROG (#0=#:G1398) (RETURN (PROG1 (LETT #0# (|sublisV| (PAIR '(|t#1|) (LIST (|devaluate| |t#1|))) (COND (|HomogeneousAggregate;CAT|) ('T (LETT |HomogeneousAggregate;CAT| (|Join| (|Aggregate|) (|mkCategory| '|domain| '(((|map| ($ (|Mapping| |t#1| |t#1|) $)) T) ((|map!| ($ (|Mapping| |t#1| |t#1|) $)) (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|any?| ((|Boolean|) (|Mapping| (|Boolean|) |t#1|) $)) (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|every?| ((|Boolean|) (|Mapping| (|Boolean|) |t#1|) $)) (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |t#1|) $)) (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|parts| ((|List| |t#1|) $)) (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|members| ((|List| |t#1|) $)) (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|count| ((|NonNegativeInteger|) |t#1| $)) (AND (|has| |t#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) ((|member?| ((|Boolean|) |t#1| $)) (AND (|has| |t#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) '(((|CoercibleTo| (|OutputForm|)) (|has| |t#1| (|CoercibleTo| (|OutputForm|)))) ((|SetCategory|) (|has| |t#1| (|SetCategory|))) ((|Evalable| |t#1|) (AND (|has| |t#1| (|Evalable| |t#1|)) (|has| |t#1| (|SetCategory|))))) '((|Boolean|) (|NonNegativeInteger|) (|List| |t#1|)) NIL)) . #1=(|HomogeneousAggregate|))))) . #1#) (SETELT #0# 0 (LIST '|HomogeneousAggregate| (|devaluate| |t#1|))))))) @ \section{HOAGG-.lsp BOOTSTRAP} {\bf HOAGG-} depends on {\bf HOAGG}. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf HOAGG-} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf HOAGG-.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <<HOAGG-.lsp BOOTSTRAP>>= (/VERSIONCHECK 2) (DEFUN |HOAGG-;eval;ALA;1| (|u| |l| $) (SPADCALL (CONS #'|HOAGG-;eval;ALA;1!0| (VECTOR $ |l|)) |u| (QREFELT $ 11))) (DEFUN |HOAGG-;eval;ALA;1!0| (|#1| $$) (SPADCALL |#1| (QREFELT $$ 1) (QREFELT (QREFELT $$ 0) 9))) (DEFUN |HOAGG-;#;ANni;2| (|c| $) (LENGTH (SPADCALL |c| (QREFELT $ 14)))) (DEFUN |HOAGG-;any?;MAB;3| (|f| |c| $) (PROG (|x| #0=#:G1409 #1=#:G1406 #2=#:G1404 #3=#:G1405) (RETURN (SEQ (PROGN (LETT #3# NIL |HOAGG-;any?;MAB;3|) (SEQ (LETT |x| NIL |HOAGG-;any?;MAB;3|) (LETT #0# (SPADCALL |c| (QREFELT $ 14)) |HOAGG-;any?;MAB;3|) G190 (COND ((OR (ATOM #0#) (PROGN (LETT |x| (CAR #0#) |HOAGG-;any?;MAB;3|) NIL)) (GO G191))) (SEQ (EXIT (PROGN (LETT #1# (SPADCALL |x| |f|) |HOAGG-;any?;MAB;3|) (COND (#3# (LETT #2# (COND (#2# 'T) ('T #1#)) |HOAGG-;any?;MAB;3|)) ('T (PROGN (LETT #2# #1# |HOAGG-;any?;MAB;3|) (LETT #3# 'T |HOAGG-;any?;MAB;3|))))))) (LETT #0# (CDR #0#) |HOAGG-;any?;MAB;3|) (GO G190) G191 (EXIT NIL)) (COND (#3# #2#) ('T 'NIL))))))) (DEFUN |HOAGG-;every?;MAB;4| (|f| |c| $) (PROG (|x| #0=#:G1414 #1=#:G1412 #2=#:G1410 #3=#:G1411) (RETURN (SEQ (PROGN (LETT #3# NIL |HOAGG-;every?;MAB;4|) (SEQ (LETT |x| NIL |HOAGG-;every?;MAB;4|) (LETT #0# (SPADCALL |c| (QREFELT $ 14)) |HOAGG-;every?;MAB;4|) G190 (COND ((OR (ATOM #0#) (PROGN (LETT |x| (CAR #0#) |HOAGG-;every?;MAB;4|) NIL)) (GO G191))) (SEQ (EXIT (PROGN (LETT #1# (SPADCALL |x| |f|) |HOAGG-;every?;MAB;4|) (COND (#3# (LETT #2# (COND (#2# #1#) ('T 'NIL)) |HOAGG-;every?;MAB;4|)) ('T (PROGN (LETT #2# #1# |HOAGG-;every?;MAB;4|) (LETT #3# 'T |HOAGG-;every?;MAB;4|))))))) (LETT #0# (CDR #0#) |HOAGG-;every?;MAB;4|) (GO G190) G191 (EXIT NIL)) (COND (#3# #2#) ('T 'T))))))) (DEFUN |HOAGG-;count;MANni;5| (|f| |c| $) (PROG (|x| #0=#:G1419 #1=#:G1417 #2=#:G1415 #3=#:G1416) (RETURN (SEQ (PROGN (LETT #3# NIL |HOAGG-;count;MANni;5|) (SEQ (LETT |x| NIL |HOAGG-;count;MANni;5|) (LETT #0# (SPADCALL |c| (QREFELT $ 14)) |HOAGG-;count;MANni;5|) G190 (COND ((OR (ATOM #0#) (PROGN (LETT |x| (CAR #0#) |HOAGG-;count;MANni;5|) NIL)) (GO G191))) (SEQ (EXIT (COND ((SPADCALL |x| |f|) (PROGN (LETT #1# 1 |HOAGG-;count;MANni;5|) (COND (#3# (LETT #2# (+ #2# #1#) |HOAGG-;count;MANni;5|)) ('T (PROGN (LETT #2# #1# |HOAGG-;count;MANni;5|) (LETT #3# 'T |HOAGG-;count;MANni;5|))))))))) (LETT #0# (CDR #0#) |HOAGG-;count;MANni;5|) (GO G190) G191 (EXIT NIL)) (COND (#3# #2#) ('T 0))))))) (DEFUN |HOAGG-;members;AL;6| (|x| $) (SPADCALL |x| (QREFELT $ 14))) (DEFUN |HOAGG-;count;SANni;7| (|s| |x| $) (SPADCALL (CONS #'|HOAGG-;count;SANni;7!0| (VECTOR $ |s|)) |x| (QREFELT $ 24))) (DEFUN |HOAGG-;count;SANni;7!0| (|#1| $$) (SPADCALL (QREFELT $$ 1) |#1| (QREFELT (QREFELT $$ 0) 23))) (DEFUN |HOAGG-;member?;SAB;8| (|e| |c| $) (SPADCALL (CONS #'|HOAGG-;member?;SAB;8!0| (VECTOR $ |e|)) |c| (QREFELT $ 26))) (DEFUN |HOAGG-;member?;SAB;8!0| (|#1| $$) (SPADCALL (QREFELT $$ 1) |#1| (QREFELT (QREFELT $$ 0) 23))) (DEFUN |HOAGG-;=;2AB;9| (|x| |y| $) (PROG (|b| #0=#:G1429 |a| #1=#:G1428 #2=#:G1425 #3=#:G1423 #4=#:G1424) (RETURN (SEQ (COND ((SPADCALL |x| (SPADCALL |y| (QREFELT $ 28)) (QREFELT $ 29)) (PROGN (LETT #4# NIL |HOAGG-;=;2AB;9|) (SEQ (LETT |b| NIL |HOAGG-;=;2AB;9|) (LETT #0# (SPADCALL |y| (QREFELT $ 14)) |HOAGG-;=;2AB;9|) (LETT |a| NIL |HOAGG-;=;2AB;9|) (LETT #1# (SPADCALL |x| (QREFELT $ 14)) |HOAGG-;=;2AB;9|) G190 (COND ((OR (ATOM #1#) (PROGN (LETT |a| (CAR #1#) |HOAGG-;=;2AB;9|) NIL) (ATOM #0#) (PROGN (LETT |b| (CAR #0#) |HOAGG-;=;2AB;9|) NIL)) (GO G191))) (SEQ (EXIT (PROGN (LETT #2# (SPADCALL |a| |b| (QREFELT $ 23)) |HOAGG-;=;2AB;9|) (COND (#4# (LETT #3# (COND (#3# #2#) ('T 'NIL)) |HOAGG-;=;2AB;9|)) ('T (PROGN (LETT #3# #2# |HOAGG-;=;2AB;9|) (LETT #4# 'T |HOAGG-;=;2AB;9|))))))) (LETT #1# (PROG1 (CDR #1#) (LETT #0# (CDR #0#) |HOAGG-;=;2AB;9|)) |HOAGG-;=;2AB;9|) (GO G190) G191 (EXIT NIL)) (COND (#4# #3#) ('T 'T)))) ('T 'NIL)))))) (DEFUN |HOAGG-;coerce;AOf;10| (|x| $) (PROG (#0=#:G1433 |a| #1=#:G1434) (RETURN (SEQ (SPADCALL (SPADCALL (PROGN (LETT #0# NIL |HOAGG-;coerce;AOf;10|) (SEQ (LETT |a| NIL |HOAGG-;coerce;AOf;10|) (LETT #1# (SPADCALL |x| (QREFELT $ 14)) |HOAGG-;coerce;AOf;10|) G190 (COND ((OR (ATOM #1#) (PROGN (LETT |a| (CAR #1#) |HOAGG-;coerce;AOf;10|) NIL)) (GO G191))) (SEQ (EXIT (LETT #0# (CONS (SPADCALL |a| (QREFELT $ 32)) #0#) |HOAGG-;coerce;AOf;10|))) (LETT #1# (CDR #1#) |HOAGG-;coerce;AOf;10|) (GO G190) G191 (EXIT (NREVERSE0 #0#)))) (QREFELT $ 34)) (QREFELT $ 35)))))) (DEFUN |HomogeneousAggregate&| (|#1| |#2|) (PROG (|dv$1| |dv$2| |dv$| $ |pv$|) (RETURN (PROGN (LETT |dv$1| (|devaluate| |#1|) . #0=(|HomogeneousAggregate&|)) (LETT |dv$2| (|devaluate| |#2|) . #0#) (LETT |dv$| (LIST '|HomogeneousAggregate&| |dv$1| |dv$2|) . #0#) (LETT $ (GETREFV 38) . #0#) (QSETREFV $ 0 |dv$|) (QSETREFV $ 3 (LETT |pv$| (|buildPredVector| 0 0 (LIST (|HasAttribute| |#1| '|finiteAggregate|) (|HasAttribute| |#1| '|shallowlyMutable|) (|HasCategory| |#2| (LIST '|Evalable| (|devaluate| |#2|))) (|HasCategory| |#2| '(|SetCategory|)) (|HasCategory| |#2| '(|CoercibleTo| (|OutputForm|))))) . #0#)) (|stuffDomainSlots| $) (QSETREFV $ 6 |#1|) (QSETREFV $ 7 |#2|) (COND ((|testBitVector| |pv$| 3) (QSETREFV $ 12 (CONS (|dispatchFunction| |HOAGG-;eval;ALA;1|) $)))) (COND ((|testBitVector| |pv$| 1) (PROGN (QSETREFV $ 16 (CONS (|dispatchFunction| |HOAGG-;#;ANni;2|) $)) (QSETREFV $ 19 (CONS (|dispatchFunction| |HOAGG-;any?;MAB;3|) $)) (QSETREFV $ 20 (CONS (|dispatchFunction| |HOAGG-;every?;MAB;4|) $)) (QSETREFV $ 21 (CONS (|dispatchFunction| |HOAGG-;count;MANni;5|) $)) (QSETREFV $ 22 (CONS (|dispatchFunction| |HOAGG-;members;AL;6|) $)) (COND ((|testBitVector| |pv$| 4) (PROGN (QSETREFV $ 25 (CONS (|dispatchFunction| |HOAGG-;count;SANni;7|) $)) (QSETREFV $ 27 (CONS (|dispatchFunction| |HOAGG-;member?;SAB;8|) $)) (QSETREFV $ 30 (CONS (|dispatchFunction| |HOAGG-;=;2AB;9|) $))))) (COND ((|testBitVector| |pv$| 5) (QSETREFV $ 36 (CONS (|dispatchFunction| |HOAGG-;coerce;AOf;10|) $))))))) $)))) (MAKEPROP '|HomogeneousAggregate&| '|infovec| (LIST '#(NIL NIL NIL NIL NIL NIL (|local| |#1|) (|local| |#2|) (|List| 37) (0 . |eval|) (|Mapping| 7 7) (6 . |map|) (12 . |eval|) (|List| 7) (18 . |parts|) (|NonNegativeInteger|) (23 . |#|) (|Boolean|) (|Mapping| 17 7) (28 . |any?|) (34 . |every?|) (40 . |count|) (46 . |members|) (51 . =) (57 . |count|) (63 . |count|) (69 . |any?|) (75 . |member?|) (81 . |#|) (86 . |size?|) (92 . =) (|OutputForm|) (98 . |coerce|) (|List| $) (103 . |commaSeparate|) (108 . |bracket|) (113 . |coerce|) (|Equation| 7)) '#(|members| 118 |member?| 123 |every?| 129 |eval| 135 |count| 141 |coerce| 153 |any?| 158 = 164 |#| 170) 'NIL (CONS (|makeByteWordVec2| 1 'NIL) (CONS '#() (CONS '#() (|makeByteWordVec2| 36 '(2 7 0 0 8 9 2 6 0 10 0 11 2 0 0 0 8 12 1 6 13 0 14 1 0 15 0 16 2 0 17 18 0 19 2 0 17 18 0 20 2 0 15 18 0 21 1 0 13 0 22 2 7 17 0 0 23 2 6 15 18 0 24 2 0 15 7 0 25 2 6 17 18 0 26 2 0 17 7 0 27 1 6 15 0 28 2 6 17 0 15 29 2 0 17 0 0 30 1 7 31 0 32 1 31 0 33 34 1 31 0 0 35 1 0 31 0 36 1 0 13 0 22 2 0 17 7 0 27 2 0 17 18 0 20 2 0 0 0 8 12 2 0 15 7 0 25 2 0 15 18 0 21 1 0 31 0 36 2 0 17 18 0 19 2 0 17 0 0 30 1 0 15 0 16))))) '|lookupComplete|)) @ \section{category CLAGG Collection} <<category CLAGG Collection>>= )abbrev category CLAGG Collection ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A collection is a homogeneous aggregate which can built from ++ list of members. The operation used to build the aggregate is ++ generically named \spadfun{construct}. However, each collection ++ provides its own special function with the same name as the ++ data type, except with an initial lower case letter, e.g. ++ \spadfun{list} for \spadtype{List}, ++ \spadfun{flexibleArray} for \spadtype{FlexibleArray}, and so on. Collection(S:Type): Category == HomogeneousAggregate(S) with construct: List S -> % ++ \axiom{construct(x,y,...,z)} returns the collection of elements \axiom{x,y,...,z} ++ ordered as given. Equivalently written as \axiom{[x,y,...,z]$D}, where ++ D is the domain. D may be omitted for those of type List. find: (S->Boolean, %) -> Union(S, "failed") ++ find(p,u) returns the first x in u such that \axiom{p(x)} is true, and ++ "failed" otherwise. if % has finiteAggregate then reduce: ((S,S)->S,%) -> S ++ reduce(f,u) reduces the binary operation f across u. For example, ++ if u is \axiom{[x,y,...,z]} then \axiom{reduce(f,u)} returns \axiom{f(..f(f(x,y),...),z)}. ++ Note: if u has one element x, \axiom{reduce(f,u)} returns x. ++ Error: if u is empty. reduce: ((S,S)->S,%,S) -> S ++ reduce(f,u,x) reduces the binary operation f across u, where x is ++ the identity operation of f. ++ Same as \axiom{reduce(f,u)} if u has 2 or more elements. ++ Returns \axiom{f(x,y)} if u has one element y, ++ x if u is empty. ++ For example, \axiom{reduce(+,u,0)} returns the ++ sum of the elements of u. remove: (S->Boolean,%) -> % ++ remove(p,u) returns a copy of u removing all elements x such that ++ \axiom{p(x)} is true. ++ Note: \axiom{remove(p,u) == [x for x in u | not p(x)]}. select: (S->Boolean,%) -> % ++ select(p,u) returns a copy of u containing only those elements such ++ \axiom{p(x)} is true. ++ Note: \axiom{select(p,u) == [x for x in u | p(x)]}. if S has SetCategory then reduce: ((S,S)->S,%,S,S) -> S ++ reduce(f,u,x,z) reduces the binary operation f across u, stopping ++ when an "absorbing element" z is encountered. ++ As for \axiom{reduce(f,u,x)}, x is the identity operation of f. ++ Same as \axiom{reduce(f,u,x)} when u contains no element z. ++ Thus the third argument x is returned when u is empty. remove: (S,%) -> % ++ remove(x,u) returns a copy of u with all ++ elements \axiom{y = x} removed. ++ Note: \axiom{remove(y,c) == [x for x in c | x ^= y]}. removeDuplicates: % -> % ++ removeDuplicates(u) returns a copy of u with all duplicates removed. if S has ConvertibleTo InputForm then ConvertibleTo InputForm add if % has finiteAggregate then #c == # parts c count(f:S -> Boolean, c:%) == _+/[1 for x in parts c | f x] any?(f, c) == _or/[f x for x in parts c] every?(f, c) == _and/[f x for x in parts c] find(f:S -> Boolean, c:%) == find(f, parts c) reduce(f:(S,S)->S, x:%) == reduce(f, parts x) reduce(f:(S,S)->S, x:%, s:S) == reduce(f, parts x, s) remove(f:S->Boolean, x:%) == construct remove(f, parts x) select(f:S->Boolean, x:%) == construct select(f, parts x) if S has SetCategory then remove(s:S, x:%) == remove(#1 = s, x) reduce(f:(S,S)->S, x:%, s1:S, s2:S) == reduce(f, parts x, s1, s2) removeDuplicates(x) == construct removeDuplicates parts x @ \section{CLAGG.lsp BOOTSTRAP} {\bf CLAGG} depends on a chain of files. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf CLAGG} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf CLAGG.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <<CLAGG.lsp BOOTSTRAP>>= (/VERSIONCHECK 2) (DEFPARAMETER |Collection;CAT| 'NIL) (DEFPARAMETER |Collection;AL| 'NIL) (DEFUN |Collection| (#0=#:G1398) (LET (#1=#:G1399) (COND ((SETQ #1# (|assoc| (|devaluate| #0#) |Collection;AL|)) (CDR #1#)) (T (SETQ |Collection;AL| (|cons5| (CONS (|devaluate| #0#) (SETQ #1# (|Collection;| #0#))) |Collection;AL|)) #1#)))) (DEFUN |Collection;| (|t#1|) (PROG (#0=#:G1397) (RETURN (PROG1 (LETT #0# (|sublisV| (PAIR '(|t#1|) (LIST (|devaluate| |t#1|))) (COND (|Collection;CAT|) ('T (LETT |Collection;CAT| (|Join| (|HomogeneousAggregate| '|t#1|) (|mkCategory| '|domain| '(((|construct| ($ (|List| |t#1|))) T) ((|find| ((|Union| |t#1| "failed") (|Mapping| (|Boolean|) |t#1|) $)) T) ((|reduce| (|t#1| (|Mapping| |t#1| |t#1| |t#1|) $)) (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|reduce| (|t#1| (|Mapping| |t#1| |t#1| |t#1|) $ |t#1|)) (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|remove| ($ (|Mapping| (|Boolean|) |t#1|) $)) (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|select| ($ (|Mapping| (|Boolean|) |t#1|) $)) (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|reduce| (|t#1| (|Mapping| |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (AND (|has| |t#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) ((|remove| ($ |t#1| $)) (AND (|has| |t#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) ((|removeDuplicates| ($ $)) (AND (|has| |t#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) '(((|ConvertibleTo| (|InputForm|)) (|has| |t#1| (|ConvertibleTo| (|InputForm|))))) '((|List| |t#1|)) NIL)) . #1=(|Collection|))))) . #1#) (SETELT #0# 0 (LIST '|Collection| (|devaluate| |t#1|))))))) @ \section{CLAGG-.lsp BOOTSTRAP} {\bf CLAGG-} depends on {\bf CLAGG}. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf CLAGG-} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf CLAGG-.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <<CLAGG-.lsp BOOTSTRAP>>= (/VERSIONCHECK 2) (DEFUN |CLAGG-;#;ANni;1| (|c| $) (LENGTH (SPADCALL |c| (QREFELT $ 9)))) (DEFUN |CLAGG-;count;MANni;2| (|f| |c| $) (PROG (|x| #0=#:G1406 #1=#:G1403 #2=#:G1401 #3=#:G1402) (RETURN (SEQ (PROGN (LETT #3# NIL |CLAGG-;count;MANni;2|) (SEQ (LETT |x| NIL |CLAGG-;count;MANni;2|) (LETT #0# (SPADCALL |c| (QREFELT $ 9)) |CLAGG-;count;MANni;2|) G190 (COND ((OR (ATOM #0#) (PROGN (LETT |x| (CAR #0#) |CLAGG-;count;MANni;2|) NIL)) (GO G191))) (SEQ (EXIT (COND ((SPADCALL |x| |f|) (PROGN (LETT #1# 1 |CLAGG-;count;MANni;2|) (COND (#3# (LETT #2# (+ #2# #1#) |CLAGG-;count;MANni;2|)) ('T (PROGN (LETT #2# #1# |CLAGG-;count;MANni;2|) (LETT #3# 'T |CLAGG-;count;MANni;2|))))))))) (LETT #0# (CDR #0#) |CLAGG-;count;MANni;2|) (GO G190) G191 (EXIT NIL)) (COND (#3# #2#) ('T 0))))))) (DEFUN |CLAGG-;any?;MAB;3| (|f| |c| $) (PROG (|x| #0=#:G1411 #1=#:G1409 #2=#:G1407 #3=#:G1408) (RETURN (SEQ (PROGN (LETT #3# NIL |CLAGG-;any?;MAB;3|) (SEQ (LETT |x| NIL |CLAGG-;any?;MAB;3|) (LETT #0# (SPADCALL |c| (QREFELT $ 9)) |CLAGG-;any?;MAB;3|) G190 (COND ((OR (ATOM #0#) (PROGN (LETT |x| (CAR #0#) |CLAGG-;any?;MAB;3|) NIL)) (GO G191))) (SEQ (EXIT (PROGN (LETT #1# (SPADCALL |x| |f|) |CLAGG-;any?;MAB;3|) (COND (#3# (LETT #2# (COND (#2# 'T) ('T #1#)) |CLAGG-;any?;MAB;3|)) ('T (PROGN (LETT #2# #1# |CLAGG-;any?;MAB;3|) (LETT #3# 'T |CLAGG-;any?;MAB;3|))))))) (LETT #0# (CDR #0#) |CLAGG-;any?;MAB;3|) (GO G190) G191 (EXIT NIL)) (COND (#3# #2#) ('T 'NIL))))))) (DEFUN |CLAGG-;every?;MAB;4| (|f| |c| $) (PROG (|x| #0=#:G1416 #1=#:G1414 #2=#:G1412 #3=#:G1413) (RETURN (SEQ (PROGN (LETT #3# NIL |CLAGG-;every?;MAB;4|) (SEQ (LETT |x| NIL |CLAGG-;every?;MAB;4|) (LETT #0# (SPADCALL |c| (QREFELT $ 9)) |CLAGG-;every?;MAB;4|) G190 (COND ((OR (ATOM #0#) (PROGN (LETT |x| (CAR #0#) |CLAGG-;every?;MAB;4|) NIL)) (GO G191))) (SEQ (EXIT (PROGN (LETT #1# (SPADCALL |x| |f|) |CLAGG-;every?;MAB;4|) (COND (#3# (LETT #2# (COND (#2# #1#) ('T 'NIL)) |CLAGG-;every?;MAB;4|)) ('T (PROGN (LETT #2# #1# |CLAGG-;every?;MAB;4|) (LETT #3# 'T |CLAGG-;every?;MAB;4|))))))) (LETT #0# (CDR #0#) |CLAGG-;every?;MAB;4|) (GO G190) G191 (EXIT NIL)) (COND (#3# #2#) ('T 'T))))))) (DEFUN |CLAGG-;find;MAU;5| (|f| |c| $) (SPADCALL |f| (SPADCALL |c| (QREFELT $ 9)) (QREFELT $ 18))) (DEFUN |CLAGG-;reduce;MAS;6| (|f| |x| $) (SPADCALL |f| (SPADCALL |x| (QREFELT $ 9)) (QREFELT $ 21))) (DEFUN |CLAGG-;reduce;MA2S;7| (|f| |x| |s| $) (SPADCALL |f| (SPADCALL |x| (QREFELT $ 9)) |s| (QREFELT $ 23))) (DEFUN |CLAGG-;remove;M2A;8| (|f| |x| $) (SPADCALL (SPADCALL |f| (SPADCALL |x| (QREFELT $ 9)) (QREFELT $ 25)) (QREFELT $ 26))) (DEFUN |CLAGG-;select;M2A;9| (|f| |x| $) (SPADCALL (SPADCALL |f| (SPADCALL |x| (QREFELT $ 9)) (QREFELT $ 28)) (QREFELT $ 26))) (DEFUN |CLAGG-;remove;S2A;10| (|s| |x| $) (SPADCALL (CONS #'|CLAGG-;remove;S2A;10!0| (VECTOR $ |s|)) |x| (QREFELT $ 31))) (DEFUN |CLAGG-;remove;S2A;10!0| (|#1| $$) (SPADCALL |#1| (QREFELT $$ 1) (QREFELT (QREFELT $$ 0) 30))) (DEFUN |CLAGG-;reduce;MA3S;11| (|f| |x| |s1| |s2| $) (SPADCALL |f| (SPADCALL |x| (QREFELT $ 9)) |s1| |s2| (QREFELT $ 33))) (DEFUN |CLAGG-;removeDuplicates;2A;12| (|x| $) (SPADCALL (SPADCALL (SPADCALL |x| (QREFELT $ 9)) (QREFELT $ 35)) (QREFELT $ 26))) (DEFUN |Collection&| (|#1| |#2|) (PROG (|dv$1| |dv$2| |dv$| $ |pv$|) (RETURN (PROGN (LETT |dv$1| (|devaluate| |#1|) . #0=(|Collection&|)) (LETT |dv$2| (|devaluate| |#2|) . #0#) (LETT |dv$| (LIST '|Collection&| |dv$1| |dv$2|) . #0#) (LETT $ (GETREFV 37) . #0#) (QSETREFV $ 0 |dv$|) (QSETREFV $ 3 (LETT |pv$| (|buildPredVector| 0 0 (LIST (|HasCategory| |#2| '(|ConvertibleTo| (|InputForm|))) (|HasCategory| |#2| '(|SetCategory|)) (|HasAttribute| |#1| '|finiteAggregate|))) . #0#)) (|stuffDomainSlots| $) (QSETREFV $ 6 |#1|) (QSETREFV $ 7 |#2|) (COND ((|testBitVector| |pv$| 3) (PROGN (QSETREFV $ 11 (CONS (|dispatchFunction| |CLAGG-;#;ANni;1|) $)) (QSETREFV $ 13 (CONS (|dispatchFunction| |CLAGG-;count;MANni;2|) $)) (QSETREFV $ 15 (CONS (|dispatchFunction| |CLAGG-;any?;MAB;3|) $)) (QSETREFV $ 16 (CONS (|dispatchFunction| |CLAGG-;every?;MAB;4|) $)) (QSETREFV $ 19 (CONS (|dispatchFunction| |CLAGG-;find;MAU;5|) $)) (QSETREFV $ 22 (CONS (|dispatchFunction| |CLAGG-;reduce;MAS;6|) $)) (QSETREFV $ 24 (CONS (|dispatchFunction| |CLAGG-;reduce;MA2S;7|) $)) (QSETREFV $ 27 (CONS (|dispatchFunction| |CLAGG-;remove;M2A;8|) $)) (QSETREFV $ 29 (CONS (|dispatchFunction| |CLAGG-;select;M2A;9|) $)) (COND ((|testBitVector| |pv$| 2) (PROGN (QSETREFV $ 32 (CONS (|dispatchFunction| |CLAGG-;remove;S2A;10|) $)) (QSETREFV $ 34 (CONS (|dispatchFunction| |CLAGG-;reduce;MA3S;11|) $)) (QSETREFV $ 36 (CONS (|dispatchFunction| |CLAGG-;removeDuplicates;2A;12|) $)))))))) $)))) (MAKEPROP '|Collection&| '|infovec| (LIST '#(NIL NIL NIL NIL NIL NIL (|local| |#1|) (|local| |#2|) (|List| 7) (0 . |parts|) (|NonNegativeInteger|) (5 . |#|) (|Mapping| 14 7) (10 . |count|) (|Boolean|) (16 . |any?|) (22 . |every?|) (|Union| 7 '"failed") (28 . |find|) (34 . |find|) (|Mapping| 7 7 7) (40 . |reduce|) (46 . |reduce|) (52 . |reduce|) (59 . |reduce|) (66 . |remove|) (72 . |construct|) (77 . |remove|) (83 . |select|) (89 . |select|) (95 . =) (101 . |remove|) (107 . |remove|) (113 . |reduce|) (121 . |reduce|) (129 . |removeDuplicates|) (134 . |removeDuplicates|)) '#(|select| 139 |removeDuplicates| 145 |remove| 150 |reduce| 162 |find| 183 |every?| 189 |count| 195 |any?| 201 |#| 207) 'NIL (CONS (|makeByteWordVec2| 1 'NIL) (CONS '#() (CONS '#() (|makeByteWordVec2| 36 '(1 6 8 0 9 1 0 10 0 11 2 0 10 12 0 13 2 0 14 12 0 15 2 0 14 12 0 16 2 8 17 12 0 18 2 0 17 12 0 19 2 8 7 20 0 21 2 0 7 20 0 22 3 8 7 20 0 7 23 3 0 7 20 0 7 24 2 8 0 12 0 25 1 6 0 8 26 2 0 0 12 0 27 2 8 0 12 0 28 2 0 0 12 0 29 2 7 14 0 0 30 2 6 0 12 0 31 2 0 0 7 0 32 4 8 7 20 0 7 7 33 4 0 7 20 0 7 7 34 1 8 0 0 35 1 0 0 0 36 2 0 0 12 0 29 1 0 0 0 36 2 0 0 7 0 32 2 0 0 12 0 27 4 0 7 20 0 7 7 34 3 0 7 20 0 7 24 2 0 7 20 0 22 2 0 17 12 0 19 2 0 14 12 0 16 2 0 10 12 0 13 2 0 14 12 0 15 1 0 10 0 11))))) '|lookupComplete|)) @ \section{category BGAGG BagAggregate} <<category BGAGG BagAggregate>>= )abbrev category BGAGG BagAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A bag aggregate is an aggregate for which one can insert and extract objects, ++ and where the order in which objects are inserted determines the order ++ of extraction. ++ Examples of bags are stacks, queues, and dequeues. BagAggregate(S:Type): Category == HomogeneousAggregate S with shallowlyMutable ++ shallowlyMutable means that elements of bags may be destructively changed. bag: List S -> % ++ bag([x,y,...,z]) creates a bag with elements x,y,...,z. extract_!: % -> S ++ extract!(u) destructively removes a (random) item from bag u. insert_!: (S,%) -> % ++ insert!(x,u) inserts item x into bag u. inspect: % -> S ++ inspect(u) returns an (random) element from a bag. add bag(l) == x:=empty() for s in l repeat x:=insert_!(s,x) x @ \section{category SKAGG StackAggregate} <<category SKAGG StackAggregate>>= )abbrev category SKAGG StackAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A stack is a bag where the last item inserted is the first item extracted. StackAggregate(S:Type): Category == BagAggregate S with finiteAggregate push_!: (S,%) -> S ++ push!(x,s) pushes x onto stack s, i.e. destructively changing s ++ so as to have a new first (top) element x. ++ Afterwards, pop!(s) produces x and pop!(s) produces the original s. pop_!: % -> S ++ pop!(s) returns the top element x, destructively removing x from s. ++ Note: Use \axiom{top(s)} to obtain x without removing it from s. ++ Error: if s is empty. top: % -> S ++ top(s) returns the top element x from s; s remains unchanged. ++ Note: Use \axiom{pop!(s)} to obtain x and remove it from s. depth: % -> NonNegativeInteger ++ depth(s) returns the number of elements of stack s. ++ Note: \axiom{depth(s) = #s}. @ \section{category QUAGG QueueAggregate} <<category QUAGG QueueAggregate>>= )abbrev category QUAGG QueueAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A queue is a bag where the first item inserted is the first item extracted. QueueAggregate(S:Type): Category == BagAggregate S with finiteAggregate enqueue_!: (S, %) -> S ++ enqueue!(x,q) inserts x into the queue q at the back end. dequeue_!: % -> S ++ dequeue! s destructively extracts the first (top) element from queue q. ++ The element previously second in the queue becomes the first element. ++ Error: if q is empty. rotate_!: % -> % ++ rotate! q rotates queue q so that the element at the front of ++ the queue goes to the back of the queue. ++ Note: rotate! q is equivalent to enqueue!(dequeue!(q)). length: % -> NonNegativeInteger ++ length(q) returns the number of elements in the queue. ++ Note: \axiom{length(q) = #q}. front: % -> S ++ front(q) returns the element at the front of the queue. ++ The queue q is unchanged by this operation. ++ Error: if q is empty. back: % -> S ++ back(q) returns the element at the back of the queue. ++ The queue q is unchanged by this operation. ++ Error: if q is empty. @ \section{category DQAGG DequeueAggregate} <<category DQAGG DequeueAggregate>>= )abbrev category DQAGG DequeueAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A dequeue is a doubly ended stack, that is, a bag where first items ++ inserted are the first items extracted, at either the front or the back end ++ of the data structure. DequeueAggregate(S:Type): Category == Join(StackAggregate S,QueueAggregate S) with dequeue: () -> % ++ dequeue()$D creates an empty dequeue of type D. dequeue: List S -> % ++ dequeue([x,y,...,z]) creates a dequeue with first (top or front) ++ element x, second element y,...,and last (bottom or back) element z. height: % -> NonNegativeInteger ++ height(d) returns the number of elements in dequeue d. ++ Note: \axiom{height(d) = # d}. top_!: % -> S ++ top!(d) returns the element at the top (front) of the dequeue. bottom_!: % -> S ++ bottom!(d) returns the element at the bottom (back) of the dequeue. insertTop_!: (S,%) -> S ++ insertTop!(x,d) destructively inserts x into the dequeue d, that is, ++ at the top (front) of the dequeue. ++ The element previously at the top of the dequeue becomes the ++ second in the dequeue, and so on. insertBottom_!: (S,%) -> S ++ insertBottom!(x,d) destructively inserts x into the dequeue d ++ at the bottom (back) of the dequeue. extractTop_!: % -> S ++ extractTop!(d) destructively extracts the top (front) element ++ from the dequeue d. ++ Error: if d is empty. extractBottom_!: % -> S ++ extractBottom!(d) destructively extracts the bottom (back) element ++ from the dequeue d. ++ Error: if d is empty. reverse_!: % -> % ++ reverse!(d) destructively replaces d by its reverse dequeue, i.e. ++ the top (front) element is now the bottom (back) element, and so on. @ \section{category PRQAGG PriorityQueueAggregate} <<category PRQAGG PriorityQueueAggregate>>= )abbrev category PRQAGG PriorityQueueAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A priority queue is a bag of items from an ordered set where the item ++ extracted is always the maximum element. PriorityQueueAggregate(S:OrderedSet): Category == BagAggregate S with finiteAggregate max: % -> S ++ max(q) returns the maximum element of priority queue q. merge: (%,%) -> % ++ merge(q1,q2) returns combines priority queues q1 and q2 to return ++ a single priority queue q. merge_!: (%,%) -> % ++ merge!(q,q1) destructively changes priority queue q to include the ++ values from priority queue q1. @ \section{category DIOPS DictionaryOperations} <<category DIOPS DictionaryOperations>>= )abbrev category DIOPS DictionaryOperations ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This category is a collection of operations common to both ++ categories \spadtype{Dictionary} and \spadtype{MultiDictionary} DictionaryOperations(S:SetCategory): Category == Join(BagAggregate S, Collection(S)) with dictionary: () -> % ++ dictionary()$D creates an empty dictionary of type D. dictionary: List S -> % ++ dictionary([x,y,...,z]) creates a dictionary consisting of ++ entries \axiom{x,y,...,z}. -- insert: (S,%) -> S ++ insert an entry -- member?: (S,%) -> Boolean ++ search for an entry -- remove_!: (S,%,NonNegativeInteger) -> % -- ++ remove!(x,d,n) destructively changes dictionary d by removing -- ++ up to n entries y such that \axiom{y = x}. -- remove_!: (S->Boolean,%,NonNegativeInteger) -> % -- ++ remove!(p,d,n) destructively changes dictionary d by removing -- ++ up to n entries x such that \axiom{p(x)} is true. if % has finiteAggregate then remove_!: (S,%) -> % ++ remove!(x,d) destructively changes dictionary d by removing ++ all entries y such that \axiom{y = x}. remove_!: (S->Boolean,%) -> % ++ remove!(p,d) destructively changes dictionary d by removeing ++ all entries x such that \axiom{p(x)} is true. select_!: (S->Boolean,%) -> % ++ select!(p,d) destructively changes dictionary d by removing ++ all entries x such that \axiom{p(x)} is not true. add construct l == dictionary l dictionary() == empty() if % has finiteAggregate then copy d == dictionary parts d coerce(s:%):OutputForm == prefix("dictionary"@String :: OutputForm, [x::OutputForm for x in parts s]) @ \section{category DIAGG Dictionary} <<category DIAGG Dictionary>>= )abbrev category DIAGG Dictionary ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A dictionary is an aggregate in which entries can be inserted, ++ searched for and removed. Duplicates are thrown away on insertion. ++ This category models the usual notion of dictionary which involves ++ large amounts of data where copying is impractical. ++ Principal operations are thus destructive (non-copying) ones. Dictionary(S:SetCategory): Category == DictionaryOperations S add dictionary l == d := dictionary() for x in l repeat insert_!(x, d) d if % has finiteAggregate then -- remove(f:S->Boolean,t:%) == remove_!(f, copy t) -- select(f, t) == select_!(f, copy t) select_!(f, t) == remove_!(not f #1, t) --extract_! d == -- empty? d => error "empty dictionary" -- remove_!(x := first parts d, d, 1) -- x s = t == eq?(s,t) => true #s ^= #t => false _and/[member?(x, t) for x in parts s] remove_!(f:S->Boolean, t:%) == for m in parts t repeat if f m then remove_!(m, t) t @ \section{category MDAGG MultiDictionary} <<category MDAGG MultiDictionary>>= )abbrev category MDAGG MultiDictionary ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A multi-dictionary is a dictionary which may contain duplicates. ++ As for any dictionary, its size is assumed large so that ++ copying (non-destructive) operations are generally to be avoided. MultiDictionary(S:SetCategory): Category == DictionaryOperations S with -- count: (S,%) -> NonNegativeInteger ++ multiplicity count insert_!: (S,%,NonNegativeInteger) -> % ++ insert!(x,d,n) destructively inserts n copies of x into dictionary d. -- remove_!: (S,%,NonNegativeInteger) -> % -- ++ remove!(x,d,n) destructively removes (up to) n copies of x from -- ++ dictionary d. removeDuplicates_!: % -> % ++ removeDuplicates!(d) destructively removes any duplicate values ++ in dictionary d. duplicates: % -> List Record(entry:S,count:NonNegativeInteger) ++ duplicates(d) returns a list of values which have duplicates in d -- ++ duplicates(d) returns a list of ++ duplicates iterator -- to become duplicates: % -> Iterator(D,D) @ \section{category SETAGG SetAggregate} <<category SETAGG SetAggregate>>= )abbrev category SETAGG SetAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: 14 Oct, 1993 by RSS ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A set category lists a collection of set-theoretic operations ++ useful for both finite sets and multisets. ++ Note however that finite sets are distinct from multisets. ++ Although the operations defined for set categories are ++ common to both, the relationship between the two cannot ++ be described by inclusion or inheritance. SetAggregate(S:SetCategory): Category == Join(SetCategory, Collection(S)) with partiallyOrderedSet "<" : (%, %) -> Boolean ++ s < t returns true if all elements of set aggregate s are also ++ elements of set aggregate t. brace : () -> % ++ brace()$D (otherwise written {}$D) ++ creates an empty set aggregate of type D. ++ This form is considered obsolete. Use \axiomFun{set} instead. brace : List S -> % ++ brace([x,y,...,z]) ++ creates a set aggregate containing items x,y,...,z. ++ This form is considered obsolete. Use \axiomFun{set} instead. set : () -> % ++ set()$D creates an empty set aggregate of type D. set : List S -> % ++ set([x,y,...,z]) creates a set aggregate containing items x,y,...,z. intersect: (%, %) -> % ++ intersect(u,v) returns the set aggregate w consisting of ++ elements common to both set aggregates u and v. ++ Note: equivalent to the notation (not currently supported) ++ {x for x in u | member?(x,v)}. difference : (%, %) -> % ++ difference(u,v) returns the set aggregate w consisting of ++ elements in set aggregate u but not in set aggregate v. ++ If u and v have no elements in common, \axiom{difference(u,v)} ++ returns a copy of u. ++ Note: equivalent to the notation (not currently supported) ++ \axiom{{x for x in u | not member?(x,v)}}. difference : (%, S) -> % ++ difference(u,x) returns the set aggregate u with element x removed. ++ If u does not contain x, a copy of u is returned. ++ Note: \axiom{difference(s, x) = difference(s, {x})}. symmetricDifference : (%, %) -> % ++ symmetricDifference(u,v) returns the set aggregate of elements x which ++ are members of set aggregate u or set aggregate v but not both. ++ If u and v have no elements in common, \axiom{symmetricDifference(u,v)} ++ returns a copy of u. ++ Note: \axiom{symmetricDifference(u,v) = union(difference(u,v),difference(v,u))} subset? : (%, %) -> Boolean ++ subset?(u,v) tests if u is a subset of v. ++ Note: equivalent to ++ \axiom{reduce(and,{member?(x,v) for x in u},true,false)}. union : (%, %) -> % ++ union(u,v) returns the set aggregate of elements which are members ++ of either set aggregate u or v. union : (%, S) -> % ++ union(u,x) returns the set aggregate u with the element x added. ++ If u already contains x, \axiom{union(u,x)} returns a copy of u. union : (S, %) -> % ++ union(x,u) returns the set aggregate u with the element x added. ++ If u already contains x, \axiom{union(x,u)} returns a copy of u. add symmetricDifference(x, y) == union(difference(x, y), difference(y, x)) union(s:%, x:S) == union(s, {x}) union(x:S, s:%) == union(s, {x}) difference(s:%, x:S) == difference(s, {x}) @ \section{SETAGG.lsp BOOTSTRAP} {\bf SETAGG} depends on a chain of files. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf SETAGG} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf SETAGG.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <<SETAGG.lsp BOOTSTRAP>>= (/VERSIONCHECK 2) (DEFPARAMETER |SetAggregate;CAT| 'NIL) (DEFPARAMETER |SetAggregate;AL| 'NIL) (DEFUN |SetAggregate| (#0=#:G1398) (LET (#1=#:G1399) (COND ((SETQ #1# (|assoc| (|devaluate| #0#) |SetAggregate;AL|)) (CDR #1#)) (T (SETQ |SetAggregate;AL| (|cons5| (CONS (|devaluate| #0#) (SETQ #1# (|SetAggregate;| #0#))) |SetAggregate;AL|)) #1#)))) (DEFUN |SetAggregate;| (|t#1|) (PROG (#0=#:G1397) (RETURN (PROG1 (LETT #0# (|sublisV| (PAIR '(|t#1|) (LIST (|devaluate| |t#1|))) (COND (|SetAggregate;CAT|) ('T (LETT |SetAggregate;CAT| (|Join| (|SetCategory|) (|Collection| '|t#1|) (|mkCategory| '|domain| '(((< ((|Boolean|) $ $)) T) ((|brace| ($)) T) ((|brace| ($ (|List| |t#1|))) T) ((|set| ($)) T) ((|set| ($ (|List| |t#1|))) T) ((|intersect| ($ $ $)) T) ((|difference| ($ $ $)) T) ((|difference| ($ $ |t#1|)) T) ((|symmetricDifference| ($ $ $)) T) ((|subset?| ((|Boolean|) $ $)) T) ((|union| ($ $ $)) T) ((|union| ($ $ |t#1|)) T) ((|union| ($ |t#1| $)) T)) '((|partiallyOrderedSet| T)) '((|Boolean|) (|List| |t#1|)) NIL)) . #1=(|SetAggregate|))))) . #1#) (SETELT #0# 0 (LIST '|SetAggregate| (|devaluate| |t#1|))))))) @ \section{SETAGG-.lsp BOOTSTRAP} {\bf SETAGG-} depends on {\bf SETAGG}. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf SETAGG-} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf SETAGG-.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <<SETAGG-.lsp BOOTSTRAP>>= (/VERSIONCHECK 2) (DEFUN |SETAGG-;symmetricDifference;3A;1| (|x| |y| $) (SPADCALL (SPADCALL |x| |y| (QREFELT $ 8)) (SPADCALL |y| |x| (QREFELT $ 8)) (QREFELT $ 9))) (DEFUN |SETAGG-;union;ASA;2| (|s| |x| $) (SPADCALL |s| (SPADCALL (LIST |x|) (QREFELT $ 12)) (QREFELT $ 9))) (DEFUN |SETAGG-;union;S2A;3| (|x| |s| $) (SPADCALL |s| (SPADCALL (LIST |x|) (QREFELT $ 12)) (QREFELT $ 9))) (DEFUN |SETAGG-;difference;ASA;4| (|s| |x| $) (SPADCALL |s| (SPADCALL (LIST |x|) (QREFELT $ 12)) (QREFELT $ 8))) (DEFUN |SetAggregate&| (|#1| |#2|) (PROG (|dv$1| |dv$2| |dv$| $ |pv$|) (RETURN (PROGN (LETT |dv$1| (|devaluate| |#1|) . #0=(|SetAggregate&|)) (LETT |dv$2| (|devaluate| |#2|) . #0#) (LETT |dv$| (LIST '|SetAggregate&| |dv$1| |dv$2|) . #0#) (LETT $ (GETREFV 16) . #0#) (QSETREFV $ 0 |dv$|) (QSETREFV $ 3 (LETT |pv$| (|buildPredVector| 0 0 NIL) . #0#)) (|stuffDomainSlots| $) (QSETREFV $ 6 |#1|) (QSETREFV $ 7 |#2|) $)))) (MAKEPROP '|SetAggregate&| '|infovec| (LIST '#(NIL NIL NIL NIL NIL NIL (|local| |#1|) (|local| |#2|) (0 . |difference|) (6 . |union|) |SETAGG-;symmetricDifference;3A;1| (|List| 7) (12 . |brace|) |SETAGG-;union;ASA;2| |SETAGG-;union;S2A;3| |SETAGG-;difference;ASA;4|) '#(|union| 17 |symmetricDifference| 29 |difference| 35) 'NIL (CONS (|makeByteWordVec2| 1 'NIL) (CONS '#() (CONS '#() (|makeByteWordVec2| 15 '(2 6 0 0 0 8 2 6 0 0 0 9 1 6 0 11 12 2 0 0 7 0 14 2 0 0 0 7 13 2 0 0 0 0 10 2 0 0 0 7 15))))) '|lookupComplete|)) @ \section{category FSAGG FiniteSetAggregate} <<category FSAGG FiniteSetAggregate>>= )abbrev category FSAGG FiniteSetAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: 14 Oct, 1993 by RSS ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A finite-set aggregate models the notion of a finite set, that is, ++ a collection of elements characterized by membership, but not ++ by order or multiplicity. ++ See \spadtype{Set} for an example. FiniteSetAggregate(S:SetCategory): Category == Join(Dictionary S, SetAggregate S) with finiteAggregate cardinality: % -> NonNegativeInteger ++ cardinality(u) returns the number of elements of u. ++ Note: \axiom{cardinality(u) = #u}. if S has Finite then Finite complement: % -> % ++ complement(u) returns the complement of the set u, ++ i.e. the set of all values not in u. universe: () -> % ++ universe()$D returns the universal set for finite set aggregate D. if S has OrderedSet then max: % -> S ++ max(u) returns the largest element of aggregate u. min: % -> S ++ min(u) returns the smallest element of aggregate u. add s < t == #s < #t and s = intersect(s,t) s = t == #s = #t and empty? difference(s,t) brace l == construct l set l == construct l cardinality s == #s construct l == (s := set(); for x in l repeat insert_!(x,s); s) count(x:S, s:%) == (member?(x, s) => 1; 0) subset?(s, t) == #s < #t and _and/[member?(x, t) for x in parts s] coerce(s:%):OutputForm == brace [x::OutputForm for x in parts s]$List(OutputForm) intersect(s, t) == i := {} for x in parts s | member?(x, t) repeat insert_!(x, i) i difference(s:%, t:%) == m := copy s for x in parts t repeat remove_!(x, m) m symmetricDifference(s, t) == d := copy s for x in parts t repeat if member?(x, s) then remove_!(x, d) else insert_!(x, d) d union(s:%, t:%) == u := copy s for x in parts t repeat insert_!(x, u) u if S has Finite then universe() == {index(i::PositiveInteger) for i in 1..size()$S} complement s == difference(universe(), s ) size() == 2 ** size()$S index i == {index(j::PositiveInteger)$S for j in 1..size()$S | bit?(i-1,j-1)} random() == index((random()$Integer rem (size()$% + 1))::PositiveInteger) lookup s == n:PositiveInteger := 1 for x in parts s repeat n := n + 2 ** ((lookup(x) - 1)::NonNegativeInteger) n if S has OrderedSet then max s == empty?(l := parts s) => error "Empty set" reduce("max", l) min s == empty?(l := parts s) => error "Empty set" reduce("min", l) @ \section{category MSETAGG MultisetAggregate} <<category MSETAGG MultisetAggregate>>= )abbrev category MSETAGG MultisetAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A multi-set aggregate is a set which keeps track of the multiplicity ++ of its elements. MultisetAggregate(S:SetCategory): Category == Join(MultiDictionary S, SetAggregate S) @ \section{category OMSAGG OrderedMultisetAggregate} <<category OMSAGG OrderedMultisetAggregate>>= )abbrev category OMSAGG OrderedMultisetAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ An ordered-multiset aggregate is a multiset built over an ordered set S ++ so that the relative sizes of its entries can be assessed. ++ These aggregates serve as models for priority queues. OrderedMultisetAggregate(S:OrderedSet): Category == Join(MultisetAggregate S,PriorityQueueAggregate S) with -- max: % -> S ++ smallest entry in the set -- duplicates: % -> List Record(entry:S,count:NonNegativeInteger) ++ to become an in order iterator -- parts: % -> List S ++ in order iterator min: % -> S ++ min(u) returns the smallest entry in the multiset aggregate u. @ \section{category KDAGG KeyedDictionary} <<category KDAGG KeyedDictionary>>= )abbrev category KDAGG KeyedDictionary ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A keyed dictionary is a dictionary of key-entry pairs for which there is ++ a unique entry for each key. KeyedDictionary(Key:SetCategory, Entry:SetCategory): Category == Dictionary Record(key:Key,entry:Entry) with key?: (Key, %) -> Boolean ++ key?(k,t) tests if k is a key in table t. keys: % -> List Key ++ keys(t) returns the list the keys in table t. -- to become keys: % -> Key* and keys: % -> Iterator(Entry,Entry) remove_!: (Key, %) -> Union(Entry,"failed") ++ remove!(k,t) searches the table t for the key k removing ++ (and return) the entry if there. ++ If t has no such key, \axiom{remove!(k,t)} returns "failed". search: (Key, %) -> Union(Entry,"failed") ++ search(k,t) searches the table t for the key k, ++ returning the entry stored in t for key k. ++ If t has no such key, \axiom{search(k,t)} returns "failed". add key?(k, t) == search(k, t) case Entry member?(p, t) == r := search(p.key, t) r case Entry and r::Entry = p.entry if % has finiteAggregate then keys t == [x.key for x in parts t] @ \section{category ELTAB Eltable} <<category ELTAB Eltable>>= )abbrev category ELTAB Eltable ++ Author: Michael Monagan; revised by Manuel Bronstein and Manuel Bronstein ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ An eltable over domains D and I is a structure which can be viewed ++ as a function from D to I. ++ Examples of eltable structures range from data structures, e.g. those ++ of type \spadtype{List}, to algebraic structures, e.g. \spadtype{Polynomial}. Eltable(S:SetCategory, Index:Type): Category == with elt : (%, S) -> Index ++ elt(u,i) (also written: u . i) returns the element of u indexed by i. ++ Error: if i is not an index of u. @ \section{category ELTAGG EltableAggregate} <<category ELTAGG EltableAggregate>>= )abbrev category ELTAGG EltableAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ An eltable aggregate is one which can be viewed as a function. ++ For example, the list \axiom{[1,7,4]} can applied to 0,1, and 2 respectively ++ will return the integers 1,7, and 4; thus this list may be viewed ++ as mapping 0 to 1, 1 to 7 and 2 to 4. In general, an aggregate ++ can map members of a domain {\em Dom} to an image domain {\em Im}. EltableAggregate(Dom:SetCategory, Im:Type): Category == -- This is separated from Eltable -- and series won't have to support qelt's and setelt's. Eltable(Dom, Im) with elt : (%, Dom, Im) -> Im ++ elt(u, x, y) applies u to x if x is in the domain of u, ++ and returns y otherwise. ++ For example, if u is a polynomial in \axiom{x} over the rationals, ++ \axiom{elt(u,n,0)} may define the coefficient of \axiom{x} ++ to the power n, returning 0 when n is out of range. qelt: (%, Dom) -> Im ++ qelt(u, x) applies \axiom{u} to \axiom{x} without checking whether ++ \axiom{x} is in the domain of \axiom{u}. If \axiom{x} is not in the ++ domain of \axiom{u} a memory-access violation may occur. If a check ++ on whether \axiom{x} is in the domain of \axiom{u} is required, use ++ the function \axiom{elt}. if % has shallowlyMutable then setelt : (%, Dom, Im) -> Im ++ setelt(u,x,y) sets the image of x to be y under u, ++ assuming x is in the domain of u. ++ Error: if x is not in the domain of u. -- this function will soon be renamed as setelt!. qsetelt_!: (%, Dom, Im) -> Im ++ qsetelt!(u,x,y) sets the image of \axiom{x} to be \axiom{y} under ++ \axiom{u}, without checking that \axiom{x} is in the domain of ++ \axiom{u}. ++ If such a check is required use the function \axiom{setelt}. add qelt(a, x) == elt(a, x) if % has shallowlyMutable then qsetelt_!(a, x, y) == (a.x := y) @ \section{category IXAGG IndexedAggregate} <<category IXAGG IndexedAggregate>>= )abbrev category IXAGG IndexedAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ An indexed aggregate is a many-to-one mapping of indices to entries. ++ For example, a one-dimensional-array is an indexed aggregate where ++ the index is an integer. Also, a table is an indexed aggregate ++ where the indices and entries may have any type. IndexedAggregate(Index: SetCategory, Entry: Type): Category == Join(HomogeneousAggregate(Entry), EltableAggregate(Index, Entry)) with entries: % -> List Entry ++ entries(u) returns a list of all the entries of aggregate u ++ in no assumed order. -- to become entries: % -> Entry* and entries: % -> Iterator(Entry,Entry) index?: (Index,%) -> Boolean ++ index?(i,u) tests if i is an index of aggregate u. indices: % -> List Index ++ indices(u) returns a list of indices of aggregate u in no ++ particular order. -- to become indices: % -> Index* and indices: % -> Iterator(Index,Index). -- map: ((Entry,Entry)->Entry,%,%,Entry) -> % -- ++ exists c = map(f,a,b,x), i:Index where -- ++ c.i = f(a(i,x),b(i,x)) | index?(i,a) or index?(i,b) if Entry has SetCategory and % has finiteAggregate then entry?: (Entry,%) -> Boolean ++ entry?(x,u) tests if x equals \axiom{u . i} for some index i. if Index has OrderedSet then maxIndex: % -> Index ++ maxIndex(u) returns the maximum index i of aggregate u. ++ Note: in general, ++ \axiom{maxIndex(u) = reduce(max,[i for i in indices u])}; ++ if u is a list, \axiom{maxIndex(u) = #u}. minIndex: % -> Index ++ minIndex(u) returns the minimum index i of aggregate u. ++ Note: in general, ++ \axiom{minIndex(a) = reduce(min,[i for i in indices a])}; ++ for lists, \axiom{minIndex(a) = 1}. first : % -> Entry ++ first(u) returns the first element x of u. ++ Note: for collections, \axiom{first([x,y,...,z]) = x}. ++ Error: if u is empty. if % has shallowlyMutable then fill_!: (%,Entry) -> % ++ fill!(u,x) replaces each entry in aggregate u by x. ++ The modified u is returned as value. swap_!: (%,Index,Index) -> Void ++ swap!(u,i,j) interchanges elements i and j of aggregate u. ++ No meaningful value is returned. add elt(a, i, x) == (index?(i, a) => qelt(a, i); x) if % has finiteAggregate then entries x == parts x if Entry has SetCategory then entry?(x, a) == member?(x, a) if Index has OrderedSet then maxIndex a == "max"/indices(a) minIndex a == "min"/indices(a) first a == a minIndex a if % has shallowlyMutable then map(f, a) == map_!(f, copy a) map_!(f, a) == for i in indices a repeat qsetelt_!(a, i, f qelt(a, i)) a fill_!(a, x) == for i in indices a repeat qsetelt_!(a, i, x) a swap_!(a, i, j) == t := a.i qsetelt_!(a, i, a.j) qsetelt_!(a, j, t) void @ \section{category TBAGG TableAggregate} <<category TBAGG TableAggregate>>= )abbrev category TBAGG TableAggregate ++ Author: Michael Monagan, Stephen Watt; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A table aggregate is a model of a table, i.e. a discrete many-to-one ++ mapping from keys to entries. TableAggregate(Key:SetCategory, Entry:SetCategory): Category == Join(KeyedDictionary(Key,Entry),IndexedAggregate(Key,Entry)) with setelt: (%,Key,Entry) -> Entry -- setelt_! later ++ setelt(t,k,e) (also written \axiom{t.k := e}) is equivalent ++ to \axiom{(insert([k,e],t); e)}. table: () -> % ++ table()$T creates an empty table of type T. table: List Record(key:Key,entry:Entry) -> % ++ table([x,y,...,z]) creates a table consisting of entries ++ \axiom{x,y,...,z}. -- to become table: Record(key:Key,entry:Entry)* -> % map: ((Entry, Entry) -> Entry, %, %) -> % ++ map(fn,t1,t2) creates a new table t from given tables t1 and t2 with ++ elements fn(x,y) where x and y are corresponding elements from t1 ++ and t2 respectively. add table() == empty() table l == dictionary l -- empty() == dictionary() insert_!(p, t) == (t(p.key) := p.entry; t) indices t == keys t coerce(t:%):OutputForm == prefix("table"::OutputForm, [k::OutputForm = (t.k)::OutputForm for k in keys t]) elt(t, k) == (r := search(k, t)) case Entry => r::Entry error "key not in table" elt(t, k, e) == (r := search(k, t)) case Entry => r::Entry e map_!(f, t) == for k in keys t repeat t.k := f t.k t map(f:(Entry, Entry) -> Entry, s:%, t:%) == z := table() for k in keys s | key?(k, t) repeat z.k := f(s.k, t.k) z -- map(f, s, t, x) == -- z := table() -- for k in keys s repeat z.k := f(s.k, t(k, x)) -- for k in keys t | not key?(k, s) repeat z.k := f(t.k, x) -- z if % has finiteAggregate then parts(t:%):List Record(key:Key,entry:Entry) == [[k, t.k] for k in keys t] parts(t:%):List Entry == [t.k for k in keys t] entries(t:%):List Entry == parts(t) s:% = t:% == eq?(s,t) => true #s ^= #t => false for k in keys s repeat (e := search(k, t)) case "failed" or (e::Entry) ^= s.k => false true map(f: Record(key:Key,entry:Entry)->Record(key:Key,entry:Entry), t: %): % == z := table() for k in keys t repeat ke: Record(key:Key,entry:Entry) := f [k, t.k] z ke.key := ke.entry z map_!(f: Record(key:Key,entry:Entry)->Record(key:Key,entry:Entry), t: %): % == lke: List Record(key:Key,entry:Entry) := nil() for k in keys t repeat lke := cons(f [k, remove_!(k,t)::Entry], lke) for ke in lke repeat t ke.key := ke.entry t inspect(t: %): Record(key:Key,entry:Entry) == ks := keys t empty? ks => error "Cannot extract from an empty aggregate" [first ks, t first ks] find(f: Record(key:Key,entry:Entry)->Boolean, t:%): Union(Record(key:Key,entry:Entry), "failed") == for ke in parts(t)@List(Record(key:Key,entry:Entry)) repeat if f ke then return ke "failed" index?(k: Key, t: %): Boolean == search(k,t) case Entry remove_!(x:Record(key:Key,entry:Entry), t:%) == if member?(x, t) then remove_!(x.key, t) t extract_!(t: %): Record(key:Key,entry:Entry) == k: Record(key:Key,entry:Entry) := inspect t remove_!(k.key, t) k any?(f: Entry->Boolean, t: %): Boolean == for k in keys t | f t k repeat return true false every?(f: Entry->Boolean, t: %): Boolean == for k in keys t | not f t k repeat return false true count(f: Entry->Boolean, t: %): NonNegativeInteger == tally: NonNegativeInteger := 0 for k in keys t | f t k repeat tally := tally + 1 tally @ \section{category RCAGG RecursiveAggregate} <<category RCAGG RecursiveAggregate>>= )abbrev category RCAGG RecursiveAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A recursive aggregate over a type S is a model for a ++ a directed graph containing values of type S. ++ Recursively, a recursive aggregate is a {\em node} ++ consisting of a \spadfun{value} from S and 0 or more \spadfun{children} ++ which are recursive aggregates. ++ A node with no children is called a \spadfun{leaf} node. ++ A recursive aggregate may be cyclic for which some operations as noted ++ may go into an infinite loop. RecursiveAggregate(S:Type): Category == HomogeneousAggregate(S) with children: % -> List % ++ children(u) returns a list of the children of aggregate u. -- should be % -> %* and also needs children: % -> Iterator(S,S) nodes: % -> List % ++ nodes(u) returns a list of all of the nodes of aggregate u. -- to become % -> %* and also nodes: % -> Iterator(S,S) leaf?: % -> Boolean ++ leaf?(u) tests if u is a terminal node. value: % -> S ++ value(u) returns the value of the node u. elt: (%,"value") -> S ++ elt(u,"value") (also written: \axiom{a. value}) is ++ equivalent to \axiom{value(a)}. cyclic?: % -> Boolean ++ cyclic?(u) tests if u has a cycle. leaves: % -> List S ++ leaves(t) returns the list of values in obtained by visiting the ++ nodes of tree \axiom{t} in left-to-right order. distance: (%,%) -> Integer ++ distance(u,v) returns the path length (an integer) from node u to v. if S has SetCategory then child?: (%,%) -> Boolean ++ child?(u,v) tests if node u is a child of node v. node?: (%,%) -> Boolean ++ node?(u,v) tests if node u is contained in node v ++ (either as a child, a child of a child, etc.). if % has shallowlyMutable then setchildren_!: (%,List %)->% ++ setchildren!(u,v) replaces the current children of node u ++ with the members of v in left-to-right order. setelt: (%,"value",S) -> S ++ setelt(a,"value",x) (also written \axiom{a . value := x}) ++ is equivalent to \axiom{setvalue!(a,x)} setvalue_!: (%,S) -> S ++ setvalue!(u,x) sets the value of node u to x. add elt(x,"value") == value x if % has shallowlyMutable then setelt(x,"value",y) == setvalue_!(x,y) if S has SetCategory then child?(x,l) == member?(x,children(l)) @ \section{RCAGG.lsp BOOTSTRAP} {\bf RCAGG} depends on a chain of files. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf RCAGG} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf RCAGG.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <<RCAGG.lsp BOOTSTRAP>>= (/VERSIONCHECK 2) (DEFPARAMETER |RecursiveAggregate;CAT| 'NIL) (DEFPARAMETER |RecursiveAggregate;AL| 'NIL) (DEFUN |RecursiveAggregate| (#0=#:G1398) (LET (#1=#:G1399) (COND ((SETQ #1# (|assoc| (|devaluate| #0#) |RecursiveAggregate;AL|)) (CDR #1#)) (T (SETQ |RecursiveAggregate;AL| (|cons5| (CONS (|devaluate| #0#) (SETQ #1# (|RecursiveAggregate;| #0#))) |RecursiveAggregate;AL|)) #1#)))) (DEFUN |RecursiveAggregate;| (|t#1|) (PROG (#0=#:G1397) (RETURN (PROG1 (LETT #0# (|sublisV| (PAIR '(|t#1|) (LIST (|devaluate| |t#1|))) (COND (|RecursiveAggregate;CAT|) ('T (LETT |RecursiveAggregate;CAT| (|Join| (|HomogeneousAggregate| '|t#1|) (|mkCategory| '|domain| '(((|children| ((|List| $) $)) T) ((|nodes| ((|List| $) $)) T) ((|leaf?| ((|Boolean|) $)) T) ((|value| (|t#1| $)) T) ((|elt| (|t#1| $ "value")) T) ((|cyclic?| ((|Boolean|) $)) T) ((|leaves| ((|List| |t#1|) $)) T) ((|distance| ((|Integer|) $ $)) T) ((|child?| ((|Boolean|) $ $)) (|has| |t#1| (|SetCategory|))) ((|node?| ((|Boolean|) $ $)) (|has| |t#1| (|SetCategory|))) ((|setchildren!| ($ $ (|List| $))) (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|setelt| (|t#1| $ "value" |t#1|)) (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|setvalue!| (|t#1| $ |t#1|)) (|has| $ (ATTRIBUTE |shallowlyMutable|)))) NIL '((|List| $) (|Boolean|) (|Integer|) (|List| |t#1|)) NIL)) . #1=(|RecursiveAggregate|))))) . #1#) (SETELT #0# 0 (LIST '|RecursiveAggregate| (|devaluate| |t#1|))))))) @ \section{RCAGG-.lsp BOOTSTRAP} {\bf RCAGG-} depends on {\bf RCAGG}. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf RCAGG-} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf RCAGG-.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <<RCAGG-.lsp BOOTSTRAP>>= (/VERSIONCHECK 2) (DEFUN |RCAGG-;elt;AvalueS;1| (|x| T0 $) (SPADCALL |x| (QREFELT $ 8))) (DEFUN |RCAGG-;setelt;Avalue2S;2| (|x| T1 |y| $) (SPADCALL |x| |y| (QREFELT $ 11))) (DEFUN |RCAGG-;child?;2AB;3| (|x| |l| $) (SPADCALL |x| (SPADCALL |l| (QREFELT $ 14)) (QREFELT $ 17))) (DEFUN |RecursiveAggregate&| (|#1| |#2|) (PROG (|dv$1| |dv$2| |dv$| $ |pv$|) (RETURN (PROGN (LETT |dv$1| (|devaluate| |#1|) . #0=(|RecursiveAggregate&|)) (LETT |dv$2| (|devaluate| |#2|) . #0#) (LETT |dv$| (LIST '|RecursiveAggregate&| |dv$1| |dv$2|) . #0#) (LETT $ (GETREFV 19) . #0#) (QSETREFV $ 0 |dv$|) (QSETREFV $ 3 (LETT |pv$| (|buildPredVector| 0 0 (LIST (|HasAttribute| |#1| '|shallowlyMutable|) (|HasCategory| |#2| '(|SetCategory|)))) . #0#)) (|stuffDomainSlots| $) (QSETREFV $ 6 |#1|) (QSETREFV $ 7 |#2|) (COND ((|testBitVector| |pv$| 1) (QSETREFV $ 12 (CONS (|dispatchFunction| |RCAGG-;setelt;Avalue2S;2|) $)))) (COND ((|testBitVector| |pv$| 2) (QSETREFV $ 18 (CONS (|dispatchFunction| |RCAGG-;child?;2AB;3|) $)))) $)))) (MAKEPROP '|RecursiveAggregate&| '|infovec| (LIST '#(NIL NIL NIL NIL NIL NIL (|local| |#1|) (|local| |#2|) (0 . |value|) '"value" |RCAGG-;elt;AvalueS;1| (5 . |setvalue!|) (11 . |setelt|) (|List| $) (18 . |children|) (|Boolean|) (|List| 6) (23 . |member?|) (29 . |child?|)) '#(|setelt| 35 |elt| 42 |child?| 48) 'NIL (CONS (|makeByteWordVec2| 1 'NIL) (CONS '#() (CONS '#() (|makeByteWordVec2| 18 '(1 6 7 0 8 2 6 7 0 7 11 3 0 7 0 9 7 12 1 6 13 0 14 2 16 15 6 0 17 2 0 15 0 0 18 3 0 7 0 9 7 12 2 0 7 0 9 10 2 0 15 0 0 18))))) '|lookupComplete|)) @ \section{category BRAGG BinaryRecursiveAggregate} <<category BRAGG BinaryRecursiveAggregate>>= )abbrev category BRAGG BinaryRecursiveAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A binary-recursive aggregate has 0, 1 or 2 children and ++ serves as a model for a binary tree or a doubly-linked aggregate structure BinaryRecursiveAggregate(S:Type):Category == RecursiveAggregate S with -- needs preorder, inorder and postorder iterators left: % -> % ++ left(u) returns the left child. elt: (%,"left") -> % ++ elt(u,"left") (also written: \axiom{a . left}) is ++ equivalent to \axiom{left(a)}. right: % -> % ++ right(a) returns the right child. elt: (%,"right") -> % ++ elt(a,"right") (also written: \axiom{a . right}) ++ is equivalent to \axiom{right(a)}. if % has shallowlyMutable then setelt: (%,"left",%) -> % ++ setelt(a,"left",b) (also written \axiom{a . left := b}) is equivalent ++ to \axiom{setleft!(a,b)}. setleft_!: (%,%) -> % ++ setleft!(a,b) sets the left child of \axiom{a} to be b. setelt: (%,"right",%) -> % ++ setelt(a,"right",b) (also written \axiom{b . right := b}) ++ is equivalent to \axiom{setright!(a,b)}. setright_!: (%,%) -> % ++ setright!(a,x) sets the right child of t to be x. add cycleMax ==> 1000 elt(x,"left") == left x elt(x,"right") == right x leaf? x == empty? x or empty? left x and empty? right x leaves t == empty? t => empty()$List(S) leaf? t => [value t] concat(leaves left t,leaves right t) nodes x == l := empty()$List(%) empty? x => l concat(nodes left x,concat([x],nodes right x)) children x == l := empty()$List(%) empty? x => l empty? left x => [right x] empty? right x => [left x] [left x, right x] if % has SetAggregate(S) and S has SetCategory then node?(u,v) == empty? v => false u = v => true for y in children v repeat node?(u,y) => return true false x = y == empty?(x) => empty?(y) empty?(y) => false value x = value y and left x = left y and right x = right y if % has finiteAggregate then member?(x,u) == empty? u => false x = value u => true member?(x,left u) or member?(x,right u) if S has CoercibleTo(OutputForm) then coerce(t:%): OutputForm == empty? t => "[]"::OutputForm v := value(t):: OutputForm empty? left t => empty? right t => v r := (right t)::OutputForm bracket ["."::OutputForm, v, r] l := (left t)::OutputForm r := empty? right t => "."::OutputForm (right t)::OutputForm bracket [l, v, r] if % has finiteAggregate then aggCount: (%,NonNegativeInteger) -> NonNegativeInteger #x == aggCount(x,0) aggCount(x,k) == empty? x => 0 k := k + 1 k = cycleMax and cyclic? x => error "cyclic tree" for y in children x repeat k := aggCount(y,k) k isCycle?: (%, List %) -> Boolean eqMember?: (%, List %) -> Boolean cyclic? x == not empty? x and isCycle?(x,empty()$(List %)) isCycle?(x,acc) == empty? x => false eqMember?(x,acc) => true for y in children x | not empty? y repeat isCycle?(y,acc) => return true false eqMember?(y,l) == for x in l repeat eq?(x,y) => return true false if % has shallowlyMutable then setelt(x,"left",b) == setleft_!(x,b) setelt(x,"right",b) == setright_!(x,b) @ \section{category DLAGG DoublyLinkedAggregate} <<category DLAGG DoublyLinkedAggregate>>= )abbrev category DLAGG DoublyLinkedAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A doubly-linked aggregate serves as a model for a doubly-linked ++ list, that is, a list which can has links to both next and previous ++ nodes and thus can be efficiently traversed in both directions. DoublyLinkedAggregate(S:Type): Category == RecursiveAggregate S with last: % -> S ++ last(l) returns the last element of a doubly-linked aggregate l. ++ Error: if l is empty. head: % -> % ++ head(l) returns the first element of a doubly-linked aggregate l. ++ Error: if l is empty. tail: % -> % ++ tail(l) returns the doubly-linked aggregate l starting at ++ its second element. ++ Error: if l is empty. previous: % -> % ++ previous(l) returns the doubly-link list beginning with its previous ++ element. ++ Error: if l has no previous element. ++ Note: \axiom{next(previous(l)) = l}. next: % -> % ++ next(l) returns the doubly-linked aggregate beginning with its next ++ element. ++ Error: if l has no next element. ++ Note: \axiom{next(l) = rest(l)} and \axiom{previous(next(l)) = l}. if % has shallowlyMutable then concat_!: (%,%) -> % ++ concat!(u,v) destructively concatenates doubly-linked aggregate v to the end of doubly-linked aggregate u. setprevious_!: (%,%) -> % ++ setprevious!(u,v) destructively sets the previous node of doubly-linked aggregate u to v, returning v. setnext_!: (%,%) -> % ++ setnext!(u,v) destructively sets the next node of doubly-linked aggregate u to v, returning v. @ \section{category URAGG UnaryRecursiveAggregate} <<category URAGG UnaryRecursiveAggregate>>= )abbrev category URAGG UnaryRecursiveAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A unary-recursive aggregate is a one where nodes may have either ++ 0 or 1 children. ++ This aggregate models, though not precisely, a linked ++ list possibly with a single cycle. ++ A node with one children models a non-empty list, with the ++ \spadfun{value} of the list designating the head, or \spadfun{first}, of the ++ list, and the child designating the tail, or \spadfun{rest}, of the list. ++ A node with no child then designates the empty list. ++ Since these aggregates are recursive aggregates, they may be cyclic. UnaryRecursiveAggregate(S:Type): Category == RecursiveAggregate S with concat: (%,%) -> % ++ concat(u,v) returns an aggregate w consisting of the elements of u ++ followed by the elements of v. ++ Note: \axiom{v = rest(w,#a)}. concat: (S,%) -> % ++ concat(x,u) returns aggregate consisting of x followed by ++ the elements of u. ++ Note: if \axiom{v = concat(x,u)} then \axiom{x = first v} ++ and \axiom{u = rest v}. first: % -> S ++ first(u) returns the first element of u ++ (equivalently, the value at the current node). elt: (%,"first") -> S ++ elt(u,"first") (also written: \axiom{u . first}) is equivalent to first u. first: (%,NonNegativeInteger) -> % ++ first(u,n) returns a copy of the first n (\axiom{n >= 0}) elements of u. rest: % -> % ++ rest(u) returns an aggregate consisting of all but the first ++ element of u ++ (equivalently, the next node of u). elt: (%,"rest") -> % ++ elt(%,"rest") (also written: \axiom{u.rest}) is ++ equivalent to \axiom{rest u}. rest: (%,NonNegativeInteger) -> % ++ rest(u,n) returns the \axiom{n}th (n >= 0) node of u. ++ Note: \axiom{rest(u,0) = u}. last: % -> S ++ last(u) resturn the last element of u. ++ Note: for lists, \axiom{last(u) = u . (maxIndex u) = u . (# u - 1)}. elt: (%,"last") -> S ++ elt(u,"last") (also written: \axiom{u . last}) is equivalent to last u. last: (%,NonNegativeInteger) -> % ++ last(u,n) returns a copy of the last n (\axiom{n >= 0}) nodes of u. ++ Note: \axiom{last(u,n)} is a list of n elements. tail: % -> % ++ tail(u) returns the last node of u. ++ Note: if u is \axiom{shallowlyMutable}, ++ \axiom{setrest(tail(u),v) = concat(u,v)}. second: % -> S ++ second(u) returns the second element of u. ++ Note: \axiom{second(u) = first(rest(u))}. third: % -> S ++ third(u) returns the third element of u. ++ Note: \axiom{third(u) = first(rest(rest(u)))}. cycleEntry: % -> % ++ cycleEntry(u) returns the head of a top-level cycle contained in ++ aggregate u, or \axiom{empty()} if none exists. cycleLength: % -> NonNegativeInteger ++ cycleLength(u) returns the length of a top-level cycle ++ contained in aggregate u, or 0 is u has no such cycle. cycleTail: % -> % ++ cycleTail(u) returns the last node in the cycle, or ++ empty if none exists. if % has shallowlyMutable then concat_!: (%,%) -> % ++ concat!(u,v) destructively concatenates v to the end of u. ++ Note: \axiom{concat!(u,v) = setlast_!(u,v)}. concat_!: (%,S) -> % ++ concat!(u,x) destructively adds element x to the end of u. ++ Note: \axiom{concat!(a,x) = setlast!(a,[x])}. cycleSplit_!: % -> % ++ cycleSplit!(u) splits the aggregate by dropping off the cycle. ++ The value returned is the cycle entry, or nil if none exists. ++ For example, if \axiom{w = concat(u,v)} is the cyclic list where v is ++ the head of the cycle, \axiom{cycleSplit!(w)} will drop v off w thus ++ destructively changing w to u, and returning v. setfirst_!: (%,S) -> S ++ setfirst!(u,x) destructively changes the first element of a to x. setelt: (%,"first",S) -> S ++ setelt(u,"first",x) (also written: \axiom{u.first := x}) is ++ equivalent to \axiom{setfirst!(u,x)}. setrest_!: (%,%) -> % ++ setrest!(u,v) destructively changes the rest of u to v. setelt: (%,"rest",%) -> % ++ setelt(u,"rest",v) (also written: \axiom{u.rest := v}) is equivalent to ++ \axiom{setrest!(u,v)}. setlast_!: (%,S) -> S ++ setlast!(u,x) destructively changes the last element of u to x. setelt: (%,"last",S) -> S ++ setelt(u,"last",x) (also written: \axiom{u.last := b}) ++ is equivalent to \axiom{setlast!(u,v)}. split_!: (%,Integer) -> % ++ split!(u,n) splits u into two aggregates: \axiom{v = rest(u,n)} ++ and \axiom{w = first(u,n)}, returning \axiom{v}. ++ Note: afterwards \axiom{rest(u,n)} returns \axiom{empty()}. add cycleMax ==> 1000 findCycle: % -> % elt(x, "first") == first x elt(x, "last") == last x elt(x, "rest") == rest x second x == first rest x third x == first rest rest x cyclic? x == not empty? x and not empty? findCycle x last x == first tail x nodes x == l := empty()$List(%) while not empty? x repeat l := concat(x, l) x := rest x reverse_! l children x == l := empty()$List(%) empty? x => l concat(rest x,l) leaf? x == empty? x value x == empty? x => error "value of empty object" first x less?(l, n) == i := n::Integer while i > 0 and not empty? l repeat (l := rest l; i := i - 1) i > 0 more?(l, n) == i := n::Integer while i > 0 and not empty? l repeat (l := rest l; i := i - 1) zero?(i) and not empty? l size?(l, n) == i := n::Integer while not empty? l and i > 0 repeat (l := rest l; i := i - 1) empty? l and zero? i #x == for k in 0.. while not empty? x repeat k = cycleMax and cyclic? x => error "cyclic list" x := rest x k tail x == empty? x => error "empty list" y := rest x for k in 0.. while not empty? y repeat k = cycleMax and cyclic? x => error "cyclic list" y := rest(x := y) x findCycle x == y := rest x while not empty? y repeat if eq?(x, y) then return x x := rest x y := rest y if empty? y then return y if eq?(x, y) then return y y := rest y y cycleTail x == empty?(y := x := cycleEntry x) => x z := rest x while not eq?(x,z) repeat (y := z; z := rest z) y cycleEntry x == empty? x => x empty?(y := findCycle x) => y z := rest y for l in 1.. while not eq?(y,z) repeat z := rest z y := x for k in 1..l repeat y := rest y while not eq?(x,y) repeat (x := rest x; y := rest y) x cycleLength x == empty? x => 0 empty?(x := findCycle x) => 0 y := rest x for k in 1.. while not eq?(x,y) repeat y := rest y k rest(x, n) == for i in 1..n repeat empty? x => error "Index out of range" x := rest x x if % has finiteAggregate then last(x, n) == n > (m := #x) => error "index out of range" copy rest(x, (m - n)::NonNegativeInteger) if S has SetCategory then x = y == eq?(x, y) => true for k in 0.. while not empty? x and not empty? y repeat k = cycleMax and cyclic? x => error "cyclic list" first x ^= first y => return false x := rest x y := rest y empty? x and empty? y node?(u, v) == for k in 0.. while not empty? v repeat u = v => return true k = cycleMax and cyclic? v => error "cyclic list" v := rest v u=v if % has shallowlyMutable then setelt(x, "first", a) == setfirst_!(x, a) setelt(x, "last", a) == setlast_!(x, a) setelt(x, "rest", a) == setrest_!(x, a) concat(x:%, y:%) == concat_!(copy x, y) setlast_!(x, s) == empty? x => error "setlast: empty list" setfirst_!(tail x, s) s setchildren_!(u,lv) == #lv=1 => setrest_!(u, first lv) error "wrong number of children specified" setvalue_!(u,s) == setfirst_!(u,s) split_!(p, n) == n < 1 => error "index out of range" p := rest(p, (n - 1)::NonNegativeInteger) q := rest p setrest_!(p, empty()) q cycleSplit_! x == empty?(y := cycleEntry x) or eq?(x, y) => y z := rest x while not eq?(z, y) repeat (x := z; z := rest z) setrest_!(x, empty()) y @ \section{URAGG.lsp BOOTSTRAP} {\bf URAGG} depends on a chain of files. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf URAGG} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf URAGG.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <<URAGG.lsp BOOTSTRAP>>= (/VERSIONCHECK 2) (DEFPARAMETER |UnaryRecursiveAggregate;CAT| 'NIL) (DEFPARAMETER |UnaryRecursiveAggregate;AL| 'NIL) (DEFUN |UnaryRecursiveAggregate| (#0=#:G1426) (LET (#1=#:G1427) (COND ((SETQ #1# (|assoc| (|devaluate| #0#) |UnaryRecursiveAggregate;AL|)) (CDR #1#)) (T (SETQ |UnaryRecursiveAggregate;AL| (|cons5| (CONS (|devaluate| #0#) (SETQ #1# (|UnaryRecursiveAggregate;| #0#))) |UnaryRecursiveAggregate;AL|)) #1#)))) (DEFUN |UnaryRecursiveAggregate;| (|t#1|) (PROG (#0=#:G1425) (RETURN (PROG1 (LETT #0# (|sublisV| (PAIR '(|t#1|) (LIST (|devaluate| |t#1|))) (COND (|UnaryRecursiveAggregate;CAT|) ('T (LETT |UnaryRecursiveAggregate;CAT| (|Join| (|RecursiveAggregate| '|t#1|) (|mkCategory| '|domain| '(((|concat| ($ $ $)) T) ((|concat| ($ |t#1| $)) T) ((|first| (|t#1| $)) T) ((|elt| (|t#1| $ "first")) T) ((|first| ($ $ (|NonNegativeInteger|))) T) ((|rest| ($ $)) T) ((|elt| ($ $ "rest")) T) ((|rest| ($ $ (|NonNegativeInteger|))) T) ((|last| (|t#1| $)) T) ((|elt| (|t#1| $ "last")) T) ((|last| ($ $ (|NonNegativeInteger|))) T) ((|tail| ($ $)) T) ((|second| (|t#1| $)) T) ((|third| (|t#1| $)) T) ((|cycleEntry| ($ $)) T) ((|cycleLength| ((|NonNegativeInteger|) $)) T) ((|cycleTail| ($ $)) T) ((|concat!| ($ $ $)) (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|concat!| ($ $ |t#1|)) (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|cycleSplit!| ($ $)) (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|setfirst!| (|t#1| $ |t#1|)) (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|setelt| (|t#1| $ "first" |t#1|)) (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|setrest!| ($ $ $)) (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|setelt| ($ $ "rest" $)) (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|setlast!| (|t#1| $ |t#1|)) (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|setelt| (|t#1| $ "last" |t#1|)) (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|split!| ($ $ (|Integer|))) (|has| $ (ATTRIBUTE |shallowlyMutable|)))) NIL '((|Integer|) (|NonNegativeInteger|)) NIL)) . #1=(|UnaryRecursiveAggregate|))))) . #1#) (SETELT #0# 0 (LIST '|UnaryRecursiveAggregate| (|devaluate| |t#1|))))))) @ \section{URAGG-.lsp BOOTSTRAP} {\bf URAGG-} depends on {\bf URAGG}. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf URAGG-} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf URAGG-.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <<URAGG-.lsp BOOTSTRAP>>= (/VERSIONCHECK 2) (DEFUN |URAGG-;elt;AfirstS;1| (|x| T0 $) (SPADCALL |x| (QREFELT $ 8))) (DEFUN |URAGG-;elt;AlastS;2| (|x| T1 $) (SPADCALL |x| (QREFELT $ 11))) (DEFUN |URAGG-;elt;ArestA;3| (|x| T2 $) (SPADCALL |x| (QREFELT $ 14))) (DEFUN |URAGG-;second;AS;4| (|x| $) (SPADCALL (SPADCALL |x| (QREFELT $ 14)) (QREFELT $ 8))) (DEFUN |URAGG-;third;AS;5| (|x| $) (SPADCALL (SPADCALL (SPADCALL |x| (QREFELT $ 14)) (QREFELT $ 14)) (QREFELT $ 8))) (DEFUN |URAGG-;cyclic?;AB;6| (|x| $) (COND ((SPADCALL |x| (QREFELT $ 20)) 'NIL) ('T (SPADCALL (SPADCALL (|URAGG-;findCycle| |x| $) (QREFELT $ 20)) (QREFELT $ 21))))) (DEFUN |URAGG-;last;AS;7| (|x| $) (SPADCALL (SPADCALL |x| (QREFELT $ 23)) (QREFELT $ 8))) (DEFUN |URAGG-;nodes;AL;8| (|x| $) (PROG (|l|) (RETURN (SEQ (LETT |l| NIL |URAGG-;nodes;AL;8|) (SEQ G190 (COND ((NULL (SPADCALL (SPADCALL |x| (QREFELT $ 20)) (QREFELT $ 21))) (GO G191))) (SEQ (LETT |l| (CONS |x| |l|) |URAGG-;nodes;AL;8|) (EXIT (LETT |x| (SPADCALL |x| (QREFELT $ 14)) |URAGG-;nodes;AL;8|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT (NREVERSE |l|)))))) (DEFUN |URAGG-;children;AL;9| (|x| $) (PROG (|l|) (RETURN (SEQ (LETT |l| NIL |URAGG-;children;AL;9|) (EXIT (COND ((SPADCALL |x| (QREFELT $ 20)) |l|) ('T (CONS (SPADCALL |x| (QREFELT $ 14)) |l|)))))))) (DEFUN |URAGG-;leaf?;AB;10| (|x| $) (SPADCALL |x| (QREFELT $ 20))) (DEFUN |URAGG-;value;AS;11| (|x| $) (COND ((SPADCALL |x| (QREFELT $ 20)) (|error| "value of empty object")) ('T (SPADCALL |x| (QREFELT $ 8))))) (DEFUN |URAGG-;less?;ANniB;12| (|l| |n| $) (PROG (|i|) (RETURN (SEQ (LETT |i| |n| |URAGG-;less?;ANniB;12|) (SEQ G190 (COND ((NULL (COND ((< 0 |i|) (SPADCALL (SPADCALL |l| (QREFELT $ 20)) (QREFELT $ 21))) ('T 'NIL))) (GO G191))) (SEQ (LETT |l| (SPADCALL |l| (QREFELT $ 14)) |URAGG-;less?;ANniB;12|) (EXIT (LETT |i| (- |i| 1) |URAGG-;less?;ANniB;12|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT (< 0 |i|)))))) (DEFUN |URAGG-;more?;ANniB;13| (|l| |n| $) (PROG (|i|) (RETURN (SEQ (LETT |i| |n| |URAGG-;more?;ANniB;13|) (SEQ G190 (COND ((NULL (COND ((< 0 |i|) (SPADCALL (SPADCALL |l| (QREFELT $ 20)) (QREFELT $ 21))) ('T 'NIL))) (GO G191))) (SEQ (LETT |l| (SPADCALL |l| (QREFELT $ 14)) |URAGG-;more?;ANniB;13|) (EXIT (LETT |i| (- |i| 1) |URAGG-;more?;ANniB;13|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT (COND ((ZEROP |i|) (SPADCALL (SPADCALL |l| (QREFELT $ 20)) (QREFELT $ 21))) ('T 'NIL))))))) (DEFUN |URAGG-;size?;ANniB;14| (|l| |n| $) (PROG (|i|) (RETURN (SEQ (LETT |i| |n| |URAGG-;size?;ANniB;14|) (SEQ G190 (COND ((NULL (COND ((SPADCALL |l| (QREFELT $ 20)) 'NIL) ('T (< 0 |i|)))) (GO G191))) (SEQ (LETT |l| (SPADCALL |l| (QREFELT $ 14)) |URAGG-;size?;ANniB;14|) (EXIT (LETT |i| (- |i| 1) |URAGG-;size?;ANniB;14|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT (COND ((SPADCALL |l| (QREFELT $ 20)) (ZEROP |i|)) ('T 'NIL))))))) (DEFUN |URAGG-;#;ANni;15| (|x| $) (PROG (|k|) (RETURN (SEQ (SEQ (LETT |k| 0 |URAGG-;#;ANni;15|) G190 (COND ((NULL (SPADCALL (SPADCALL |x| (QREFELT $ 20)) (QREFELT $ 21))) (GO G191))) (SEQ (COND ((EQL |k| 1000) (COND ((SPADCALL |x| (QREFELT $ 34)) (EXIT (|error| "cyclic list")))))) (EXIT (LETT |x| (SPADCALL |x| (QREFELT $ 14)) |URAGG-;#;ANni;15|))) (LETT |k| (QSADD1 |k|) |URAGG-;#;ANni;15|) (GO G190) G191 (EXIT NIL)) (EXIT |k|))))) (DEFUN |URAGG-;tail;2A;16| (|x| $) (PROG (|k| |y|) (RETURN (SEQ (COND ((SPADCALL |x| (QREFELT $ 20)) (|error| "empty list")) ('T (SEQ (LETT |y| (SPADCALL |x| (QREFELT $ 14)) |URAGG-;tail;2A;16|) (SEQ (LETT |k| 0 |URAGG-;tail;2A;16|) G190 (COND ((NULL (SPADCALL (SPADCALL |y| (QREFELT $ 20)) (QREFELT $ 21))) (GO G191))) (SEQ (COND ((EQL |k| 1000) (COND ((SPADCALL |x| (QREFELT $ 34)) (EXIT (|error| "cyclic list")))))) (EXIT (LETT |y| (SPADCALL (LETT |x| |y| |URAGG-;tail;2A;16|) (QREFELT $ 14)) |URAGG-;tail;2A;16|))) (LETT |k| (QSADD1 |k|) |URAGG-;tail;2A;16|) (GO G190) G191 (EXIT NIL)) (EXIT |x|)))))))) (DEFUN |URAGG-;findCycle| (|x| $) (PROG (#0=#:G1475 |y|) (RETURN (SEQ (EXIT (SEQ (LETT |y| (SPADCALL |x| (QREFELT $ 14)) |URAGG-;findCycle|) (SEQ G190 (COND ((NULL (SPADCALL (SPADCALL |y| (QREFELT $ 20)) (QREFELT $ 21))) (GO G191))) (SEQ (COND ((SPADCALL |x| |y| (QREFELT $ 37)) (PROGN (LETT #0# |x| |URAGG-;findCycle|) (GO #0#)))) (LETT |x| (SPADCALL |x| (QREFELT $ 14)) |URAGG-;findCycle|) (LETT |y| (SPADCALL |y| (QREFELT $ 14)) |URAGG-;findCycle|) (COND ((SPADCALL |y| (QREFELT $ 20)) (PROGN (LETT #0# |y| |URAGG-;findCycle|) (GO #0#)))) (COND ((SPADCALL |x| |y| (QREFELT $ 37)) (PROGN (LETT #0# |y| |URAGG-;findCycle|) (GO #0#)))) (EXIT (LETT |y| (SPADCALL |y| (QREFELT $ 14)) |URAGG-;findCycle|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT |y|))) #0# (EXIT #0#))))) (DEFUN |URAGG-;cycleTail;2A;18| (|x| $) (PROG (|y| |z|) (RETURN (SEQ (COND ((SPADCALL (LETT |y| (LETT |x| (SPADCALL |x| (QREFELT $ 38)) |URAGG-;cycleTail;2A;18|) |URAGG-;cycleTail;2A;18|) (QREFELT $ 20)) |x|) ('T (SEQ (LETT |z| (SPADCALL |x| (QREFELT $ 14)) |URAGG-;cycleTail;2A;18|) (SEQ G190 (COND ((NULL (SPADCALL (SPADCALL |x| |z| (QREFELT $ 37)) (QREFELT $ 21))) (GO G191))) (SEQ (LETT |y| |z| |URAGG-;cycleTail;2A;18|) (EXIT (LETT |z| (SPADCALL |z| (QREFELT $ 14)) |URAGG-;cycleTail;2A;18|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT |y|)))))))) (DEFUN |URAGG-;cycleEntry;2A;19| (|x| $) (PROG (|l| |z| |k| |y|) (RETURN (SEQ (COND ((SPADCALL |x| (QREFELT $ 20)) |x|) ((SPADCALL (LETT |y| (|URAGG-;findCycle| |x| $) |URAGG-;cycleEntry;2A;19|) (QREFELT $ 20)) |y|) ('T (SEQ (LETT |z| (SPADCALL |y| (QREFELT $ 14)) |URAGG-;cycleEntry;2A;19|) (SEQ (LETT |l| 1 |URAGG-;cycleEntry;2A;19|) G190 (COND ((NULL (SPADCALL (SPADCALL |y| |z| (QREFELT $ 37)) (QREFELT $ 21))) (GO G191))) (SEQ (EXIT (LETT |z| (SPADCALL |z| (QREFELT $ 14)) |URAGG-;cycleEntry;2A;19|))) (LETT |l| (QSADD1 |l|) |URAGG-;cycleEntry;2A;19|) (GO G190) G191 (EXIT NIL)) (LETT |y| |x| |URAGG-;cycleEntry;2A;19|) (SEQ (LETT |k| 1 |URAGG-;cycleEntry;2A;19|) G190 (COND ((QSGREATERP |k| |l|) (GO G191))) (SEQ (EXIT (LETT |y| (SPADCALL |y| (QREFELT $ 14)) |URAGG-;cycleEntry;2A;19|))) (LETT |k| (QSADD1 |k|) |URAGG-;cycleEntry;2A;19|) (GO G190) G191 (EXIT NIL)) (SEQ G190 (COND ((NULL (SPADCALL (SPADCALL |x| |y| (QREFELT $ 37)) (QREFELT $ 21))) (GO G191))) (SEQ (LETT |x| (SPADCALL |x| (QREFELT $ 14)) |URAGG-;cycleEntry;2A;19|) (EXIT (LETT |y| (SPADCALL |y| (QREFELT $ 14)) |URAGG-;cycleEntry;2A;19|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT |x|)))))))) (DEFUN |URAGG-;cycleLength;ANni;20| (|x| $) (PROG (|k| |y|) (RETURN (SEQ (COND ((OR (SPADCALL |x| (QREFELT $ 20)) (SPADCALL (LETT |x| (|URAGG-;findCycle| |x| $) |URAGG-;cycleLength;ANni;20|) (QREFELT $ 20))) 0) ('T (SEQ (LETT |y| (SPADCALL |x| (QREFELT $ 14)) |URAGG-;cycleLength;ANni;20|) (SEQ (LETT |k| 1 |URAGG-;cycleLength;ANni;20|) G190 (COND ((NULL (SPADCALL (SPADCALL |x| |y| (QREFELT $ 37)) (QREFELT $ 21))) (GO G191))) (SEQ (EXIT (LETT |y| (SPADCALL |y| (QREFELT $ 14)) |URAGG-;cycleLength;ANni;20|))) (LETT |k| (QSADD1 |k|) |URAGG-;cycleLength;ANni;20|) (GO G190) G191 (EXIT NIL)) (EXIT |k|)))))))) (DEFUN |URAGG-;rest;ANniA;21| (|x| |n| $) (PROG (|i|) (RETURN (SEQ (SEQ (LETT |i| 1 |URAGG-;rest;ANniA;21|) G190 (COND ((QSGREATERP |i| |n|) (GO G191))) (SEQ (EXIT (COND ((SPADCALL |x| (QREFELT $ 20)) (|error| "Index out of range")) ('T (LETT |x| (SPADCALL |x| (QREFELT $ 14)) |URAGG-;rest;ANniA;21|))))) (LETT |i| (QSADD1 |i|) |URAGG-;rest;ANniA;21|) (GO G190) G191 (EXIT NIL)) (EXIT |x|))))) (DEFUN |URAGG-;last;ANniA;22| (|x| |n| $) (PROG (|m| #0=#:G1498) (RETURN (SEQ (LETT |m| (SPADCALL |x| (QREFELT $ 43)) |URAGG-;last;ANniA;22|) (EXIT (COND ((< |m| |n|) (|error| "index out of range")) ('T (SPADCALL (SPADCALL |x| (PROG1 (LETT #0# (- |m| |n|) |URAGG-;last;ANniA;22|) (|check-subtype| (>= #0# 0) '(|NonNegativeInteger|) #0#)) (QREFELT $ 44)) (QREFELT $ 45))))))))) (DEFUN |URAGG-;=;2AB;23| (|x| |y| $) (PROG (|k| #0=#:G1508) (RETURN (SEQ (EXIT (COND ((SPADCALL |x| |y| (QREFELT $ 37)) 'T) ('T (SEQ (SEQ (LETT |k| 0 |URAGG-;=;2AB;23|) G190 (COND ((NULL (COND ((SPADCALL |x| (QREFELT $ 20)) 'NIL) ('T (SPADCALL (SPADCALL |y| (QREFELT $ 20)) (QREFELT $ 21))))) (GO G191))) (SEQ (COND ((EQL |k| 1000) (COND ((SPADCALL |x| (QREFELT $ 34)) (EXIT (|error| "cyclic list")))))) (COND ((NULL (SPADCALL (SPADCALL |x| (QREFELT $ 8)) (SPADCALL |y| (QREFELT $ 8)) (QREFELT $ 47))) (EXIT (PROGN (LETT #0# 'NIL |URAGG-;=;2AB;23|) (GO #0#))))) (LETT |x| (SPADCALL |x| (QREFELT $ 14)) |URAGG-;=;2AB;23|) (EXIT (LETT |y| (SPADCALL |y| (QREFELT $ 14)) |URAGG-;=;2AB;23|))) (LETT |k| (QSADD1 |k|) |URAGG-;=;2AB;23|) (GO G190) G191 (EXIT NIL)) (EXIT (COND ((SPADCALL |x| (QREFELT $ 20)) (SPADCALL |y| (QREFELT $ 20))) ('T 'NIL))))))) #0# (EXIT #0#))))) (DEFUN |URAGG-;node?;2AB;24| (|u| |v| $) (PROG (|k| #0=#:G1513) (RETURN (SEQ (EXIT (SEQ (SEQ (LETT |k| 0 |URAGG-;node?;2AB;24|) G190 (COND ((NULL (SPADCALL (SPADCALL |v| (QREFELT $ 20)) (QREFELT $ 21))) (GO G191))) (SEQ (EXIT (COND ((SPADCALL |u| |v| (QREFELT $ 49)) (PROGN (LETT #0# 'T |URAGG-;node?;2AB;24|) (GO #0#))) ('T (SEQ (COND ((EQL |k| 1000) (COND ((SPADCALL |v| (QREFELT $ 34)) (EXIT (|error| "cyclic list")))))) (EXIT (LETT |v| (SPADCALL |v| (QREFELT $ 14)) |URAGG-;node?;2AB;24|))))))) (LETT |k| (QSADD1 |k|) |URAGG-;node?;2AB;24|) (GO G190) G191 (EXIT NIL)) (EXIT (SPADCALL |u| |v| (QREFELT $ 49))))) #0# (EXIT #0#))))) (DEFUN |URAGG-;setelt;Afirst2S;25| (|x| T3 |a| $) (SPADCALL |x| |a| (QREFELT $ 51))) (DEFUN |URAGG-;setelt;Alast2S;26| (|x| T4 |a| $) (SPADCALL |x| |a| (QREFELT $ 53))) (DEFUN |URAGG-;setelt;Arest2A;27| (|x| T5 |a| $) (SPADCALL |x| |a| (QREFELT $ 55))) (DEFUN |URAGG-;concat;3A;28| (|x| |y| $) (SPADCALL (SPADCALL |x| (QREFELT $ 45)) |y| (QREFELT $ 57))) (DEFUN |URAGG-;setlast!;A2S;29| (|x| |s| $) (SEQ (COND ((SPADCALL |x| (QREFELT $ 20)) (|error| "setlast: empty list")) ('T (SEQ (SPADCALL (SPADCALL |x| (QREFELT $ 23)) |s| (QREFELT $ 51)) (EXIT |s|)))))) (DEFUN |URAGG-;setchildren!;ALA;30| (|u| |lv| $) (COND ((EQL (LENGTH |lv|) 1) (SPADCALL |u| (|SPADfirst| |lv|) (QREFELT $ 55))) ('T (|error| "wrong number of children specified")))) (DEFUN |URAGG-;setvalue!;A2S;31| (|u| |s| $) (SPADCALL |u| |s| (QREFELT $ 51))) (DEFUN |URAGG-;split!;AIA;32| (|p| |n| $) (PROG (#0=#:G1524 |q|) (RETURN (SEQ (COND ((< |n| 1) (|error| "index out of range")) ('T (SEQ (LETT |p| (SPADCALL |p| (PROG1 (LETT #0# (- |n| 1) |URAGG-;split!;AIA;32|) (|check-subtype| (>= #0# 0) '(|NonNegativeInteger|) #0#)) (QREFELT $ 44)) |URAGG-;split!;AIA;32|) (LETT |q| (SPADCALL |p| (QREFELT $ 14)) |URAGG-;split!;AIA;32|) (SPADCALL |p| (SPADCALL (QREFELT $ 62)) (QREFELT $ 55)) (EXIT |q|)))))))) (DEFUN |URAGG-;cycleSplit!;2A;33| (|x| $) (PROG (|y| |z|) (RETURN (SEQ (COND ((OR (SPADCALL (LETT |y| (SPADCALL |x| (QREFELT $ 38)) |URAGG-;cycleSplit!;2A;33|) (QREFELT $ 20)) (SPADCALL |x| |y| (QREFELT $ 37))) |y|) ('T (SEQ (LETT |z| (SPADCALL |x| (QREFELT $ 14)) |URAGG-;cycleSplit!;2A;33|) (SEQ G190 (COND ((NULL (SPADCALL (SPADCALL |z| |y| (QREFELT $ 37)) (QREFELT $ 21))) (GO G191))) (SEQ (LETT |x| |z| |URAGG-;cycleSplit!;2A;33|) (EXIT (LETT |z| (SPADCALL |z| (QREFELT $ 14)) |URAGG-;cycleSplit!;2A;33|))) NIL (GO G190) G191 (EXIT NIL)) (SPADCALL |x| (SPADCALL (QREFELT $ 62)) (QREFELT $ 55)) (EXIT |y|)))))))) (DEFUN |UnaryRecursiveAggregate&| (|#1| |#2|) (PROG (|dv$1| |dv$2| |dv$| $ |pv$|) (RETURN (PROGN (LETT |dv$1| (|devaluate| |#1|) . #0=(|UnaryRecursiveAggregate&|)) (LETT |dv$2| (|devaluate| |#2|) . #0#) (LETT |dv$| (LIST '|UnaryRecursiveAggregate&| |dv$1| |dv$2|) . #0#) (LETT $ (GETREFV 67) . #0#) (QSETREFV $ 0 |dv$|) (QSETREFV $ 3 (LETT |pv$| (|buildPredVector| 0 0 (LIST (|HasAttribute| |#1| '|shallowlyMutable|))) . #0#)) (|stuffDomainSlots| $) (QSETREFV $ 6 |#1|) (QSETREFV $ 7 |#2|) (COND ((|HasAttribute| |#1| '|finiteAggregate|) (QSETREFV $ 46 (CONS (|dispatchFunction| |URAGG-;last;ANniA;22|) $)))) (COND ((|HasCategory| |#2| '(|SetCategory|)) (PROGN (QSETREFV $ 48 (CONS (|dispatchFunction| |URAGG-;=;2AB;23|) $)) (QSETREFV $ 50 (CONS (|dispatchFunction| |URAGG-;node?;2AB;24|) $))))) (COND ((|testBitVector| |pv$| 1) (PROGN (QSETREFV $ 52 (CONS (|dispatchFunction| |URAGG-;setelt;Afirst2S;25|) $)) (QSETREFV $ 54 (CONS (|dispatchFunction| |URAGG-;setelt;Alast2S;26|) $)) (QSETREFV $ 56 (CONS (|dispatchFunction| |URAGG-;setelt;Arest2A;27|) $)) (QSETREFV $ 58 (CONS (|dispatchFunction| |URAGG-;concat;3A;28|) $)) (QSETREFV $ 59 (CONS (|dispatchFunction| |URAGG-;setlast!;A2S;29|) $)) (QSETREFV $ 60 (CONS (|dispatchFunction| |URAGG-;setchildren!;ALA;30|) $)) (QSETREFV $ 61 (CONS (|dispatchFunction| |URAGG-;setvalue!;A2S;31|) $)) (QSETREFV $ 64 (CONS (|dispatchFunction| |URAGG-;split!;AIA;32|) $)) (QSETREFV $ 65 (CONS (|dispatchFunction| |URAGG-;cycleSplit!;2A;33|) $))))) $)))) (MAKEPROP '|UnaryRecursiveAggregate&| '|infovec| (LIST '#(NIL NIL NIL NIL NIL NIL (|local| |#1|) (|local| |#2|) (0 . |first|) '"first" |URAGG-;elt;AfirstS;1| (5 . |last|) '"last" |URAGG-;elt;AlastS;2| (10 . |rest|) '"rest" |URAGG-;elt;ArestA;3| |URAGG-;second;AS;4| |URAGG-;third;AS;5| (|Boolean|) (15 . |empty?|) (20 . |not|) |URAGG-;cyclic?;AB;6| (25 . |tail|) |URAGG-;last;AS;7| (|List| $) |URAGG-;nodes;AL;8| |URAGG-;children;AL;9| |URAGG-;leaf?;AB;10| |URAGG-;value;AS;11| (|NonNegativeInteger|) |URAGG-;less?;ANniB;12| |URAGG-;more?;ANniB;13| |URAGG-;size?;ANniB;14| (30 . |cyclic?|) |URAGG-;#;ANni;15| |URAGG-;tail;2A;16| (35 . |eq?|) (41 . |cycleEntry|) |URAGG-;cycleTail;2A;18| |URAGG-;cycleEntry;2A;19| |URAGG-;cycleLength;ANni;20| |URAGG-;rest;ANniA;21| (46 . |#|) (51 . |rest|) (57 . |copy|) (62 . |last|) (68 . =) (74 . =) (80 . =) (86 . |node?|) (92 . |setfirst!|) (98 . |setelt|) (105 . |setlast!|) (111 . |setelt|) (118 . |setrest!|) (124 . |setelt|) (131 . |concat!|) (137 . |concat|) (143 . |setlast!|) (149 . |setchildren!|) (155 . |setvalue!|) (161 . |empty|) (|Integer|) (165 . |split!|) (171 . |cycleSplit!|) '"value") '#(|value| 176 |third| 181 |tail| 186 |split!| 191 |size?| 197 |setvalue!| 203 |setlast!| 209 |setelt| 215 |setchildren!| 236 |second| 242 |rest| 247 |nodes| 253 |node?| 258 |more?| 264 |less?| 270 |leaf?| 276 |last| 281 |elt| 292 |cyclic?| 310 |cycleTail| 315 |cycleSplit!| 320 |cycleLength| 325 |cycleEntry| 330 |concat| 335 |children| 341 = 346 |#| 352) 'NIL (CONS (|makeByteWordVec2| 1 'NIL) (CONS '#() (CONS '#() (|makeByteWordVec2| 65 '(1 6 7 0 8 1 6 7 0 11 1 6 0 0 14 1 6 19 0 20 1 19 0 0 21 1 6 0 0 23 1 6 19 0 34 2 6 19 0 0 37 1 6 0 0 38 1 6 30 0 43 2 6 0 0 30 44 1 6 0 0 45 2 0 0 0 30 46 2 7 19 0 0 47 2 0 19 0 0 48 2 6 19 0 0 49 2 0 19 0 0 50 2 6 7 0 7 51 3 0 7 0 9 7 52 2 6 7 0 7 53 3 0 7 0 12 7 54 2 6 0 0 0 55 3 0 0 0 15 0 56 2 6 0 0 0 57 2 0 0 0 0 58 2 0 7 0 7 59 2 0 0 0 25 60 2 0 7 0 7 61 0 6 0 62 2 0 0 0 63 64 1 0 0 0 65 1 0 7 0 29 1 0 7 0 18 1 0 0 0 36 2 0 0 0 63 64 2 0 19 0 30 33 2 0 7 0 7 61 2 0 7 0 7 59 3 0 7 0 12 7 54 3 0 0 0 15 0 56 3 0 7 0 9 7 52 2 0 0 0 25 60 1 0 7 0 17 2 0 0 0 30 42 1 0 25 0 26 2 0 19 0 0 50 2 0 19 0 30 32 2 0 19 0 30 31 1 0 19 0 28 2 0 0 0 30 46 1 0 7 0 24 2 0 7 0 12 13 2 0 0 0 15 16 2 0 7 0 9 10 1 0 19 0 22 1 0 0 0 39 1 0 0 0 65 1 0 30 0 41 1 0 0 0 40 2 0 0 0 0 58 1 0 25 0 27 2 0 19 0 0 48 1 0 30 0 35))))) '|lookupComplete|)) @ \section{category STAGG StreamAggregate} <<category STAGG StreamAggregate>>= )abbrev category STAGG StreamAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A stream aggregate is a linear aggregate which possibly has an infinite ++ number of elements. A basic domain constructor which builds stream ++ aggregates is \spadtype{Stream}. From streams, a number of infinite ++ structures such power series can be built. A stream aggregate may ++ also be infinite since it may be cyclic. ++ For example, see \spadtype{DecimalExpansion}. StreamAggregate(S:Type): Category == Join(UnaryRecursiveAggregate S, LinearAggregate S) with explicitlyFinite?: % -> Boolean ++ explicitlyFinite?(s) tests if the stream has a finite ++ number of elements, and false otherwise. ++ Note: for many datatypes, \axiom{explicitlyFinite?(s) = not possiblyInfinite?(s)}. possiblyInfinite?: % -> Boolean ++ possiblyInfinite?(s) tests if the stream s could possibly ++ have an infinite number of elements. ++ Note: for many datatypes, \axiom{possiblyInfinite?(s) = not explictlyFinite?(s)}. add c2: (%, %) -> S explicitlyFinite? x == not cyclic? x possiblyInfinite? x == cyclic? x first(x, n) == construct [c2(x, x := rest x) for i in 1..n] c2(x, r) == empty? x => error "Index out of range" first x elt(x:%, i:Integer) == i := i - minIndex x (i < 0) or empty?(x := rest(x, i::NonNegativeInteger)) => error "index out of range" first x elt(x:%, i:UniversalSegment(Integer)) == l := lo(i) - minIndex x l < 0 => error "index out of range" not hasHi i => copy(rest(x, l::NonNegativeInteger)) (h := hi(i) - minIndex x) < l => empty() first(rest(x, l::NonNegativeInteger), (h - l + 1)::NonNegativeInteger) if % has shallowlyMutable then concat(x:%, y:%) == concat_!(copy x, y) concat l == empty? l => empty() concat_!(copy first l, concat rest l) map_!(f, l) == y := l while not empty? l repeat setfirst_!(l, f first l) l := rest l y fill_!(x, s) == y := x while not empty? y repeat (setfirst_!(y, s); y := rest y) x setelt(x:%, i:Integer, s:S) == i := i - minIndex x (i < 0) or empty?(x := rest(x,i::NonNegativeInteger)) => error "index out of range" setfirst_!(x, s) setelt(x:%, i:UniversalSegment(Integer), s:S) == (l := lo(i) - minIndex x) < 0 => error "index out of range" h := if hasHi i then hi(i) - minIndex x else maxIndex x h < l => s y := rest(x, l::NonNegativeInteger) z := rest(y, (h - l + 1)::NonNegativeInteger) while not eq?(y, z) repeat (setfirst_!(y, s); y := rest y) s concat_!(x:%, y:%) == empty? x => y setrest_!(tail x, y) x @ \section{STAGG.lsp BOOTSTRAP} {\bf STAGG} depends on a chain of files. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf STAGG} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf STAGG.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <<STAGG.lsp BOOTSTRAP>>= (/VERSIONCHECK 2) (DEFPARAMETER |StreamAggregate;CAT| 'NIL) (DEFPARAMETER |StreamAggregate;AL| 'NIL) (DEFUN |StreamAggregate| (#0=#:G1405) (LET (#1=#:G1406) (COND ((SETQ #1# (|assoc| (|devaluate| #0#) |StreamAggregate;AL|)) (CDR #1#)) (T (SETQ |StreamAggregate;AL| (|cons5| (CONS (|devaluate| #0#) (SETQ #1# (|StreamAggregate;| #0#))) |StreamAggregate;AL|)) #1#)))) (DEFUN |StreamAggregate;| (|t#1|) (PROG (#0=#:G1404) (RETURN (PROG1 (LETT #0# (|sublisV| (PAIR '(|t#1|) (LIST (|devaluate| |t#1|))) (COND (|StreamAggregate;CAT|) ('T (LETT |StreamAggregate;CAT| (|Join| (|UnaryRecursiveAggregate| '|t#1|) (|LinearAggregate| '|t#1|) (|mkCategory| '|domain| '(((|explicitlyFinite?| ((|Boolean|) $)) T) ((|possiblyInfinite?| ((|Boolean|) $)) T)) NIL '((|Boolean|)) NIL)) . #1=(|StreamAggregate|))))) . #1#) (SETELT #0# 0 (LIST '|StreamAggregate| (|devaluate| |t#1|))))))) @ \section{STAGG-.lsp BOOTSTRAP} {\bf STAGG-} depends on {\bf STAGG}. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf STAGG-} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf STAGG-.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <<STAGG-.lsp BOOTSTRAP>>= (/VERSIONCHECK 2) (DEFUN |STAGG-;explicitlyFinite?;AB;1| (|x| $) (SPADCALL (SPADCALL |x| (QREFELT $ 9)) (QREFELT $ 10))) (DEFUN |STAGG-;possiblyInfinite?;AB;2| (|x| $) (SPADCALL |x| (QREFELT $ 9))) (DEFUN |STAGG-;first;ANniA;3| (|x| |n| $) (PROG (#0=#:G1411 |i|) (RETURN (SEQ (SPADCALL (PROGN (LETT #0# NIL |STAGG-;first;ANniA;3|) (SEQ (LETT |i| 1 |STAGG-;first;ANniA;3|) G190 (COND ((QSGREATERP |i| |n|) (GO G191))) (SEQ (EXIT (LETT #0# (CONS (|STAGG-;c2| |x| (LETT |x| (SPADCALL |x| (QREFELT $ 13)) |STAGG-;first;ANniA;3|) $) #0#) |STAGG-;first;ANniA;3|))) (LETT |i| (QSADD1 |i|) |STAGG-;first;ANniA;3|) (GO G190) G191 (EXIT (NREVERSE0 #0#)))) (QREFELT $ 15)))))) (DEFUN |STAGG-;c2| (|x| |r| $) (COND ((SPADCALL |x| (QREFELT $ 18)) (|error| "Index out of range")) ('T (SPADCALL |x| (QREFELT $ 19))))) (DEFUN |STAGG-;elt;AIS;5| (|x| |i| $) (PROG (#0=#:G1414) (RETURN (SEQ (LETT |i| (- |i| (SPADCALL |x| (QREFELT $ 21))) |STAGG-;elt;AIS;5|) (COND ((OR (< |i| 0) (SPADCALL (LETT |x| (SPADCALL |x| (PROG1 (LETT #0# |i| |STAGG-;elt;AIS;5|) (|check-subtype| (>= #0# 0) '(|NonNegativeInteger|) #0#)) (QREFELT $ 22)) |STAGG-;elt;AIS;5|) (QREFELT $ 18))) (EXIT (|error| "index out of range")))) (EXIT (SPADCALL |x| (QREFELT $ 19))))))) (DEFUN |STAGG-;elt;AUsA;6| (|x| |i| $) (PROG (|l| #0=#:G1418 |h| #1=#:G1420 #2=#:G1421) (RETURN (SEQ (LETT |l| (- (SPADCALL |i| (QREFELT $ 25)) (SPADCALL |x| (QREFELT $ 21))) |STAGG-;elt;AUsA;6|) (EXIT (COND ((< |l| 0) (|error| "index out of range")) ((NULL (SPADCALL |i| (QREFELT $ 26))) (SPADCALL (SPADCALL |x| (PROG1 (LETT #0# |l| |STAGG-;elt;AUsA;6|) (|check-subtype| (>= #0# 0) '(|NonNegativeInteger|) #0#)) (QREFELT $ 22)) (QREFELT $ 27))) ('T (SEQ (LETT |h| (- (SPADCALL |i| (QREFELT $ 28)) (SPADCALL |x| (QREFELT $ 21))) |STAGG-;elt;AUsA;6|) (EXIT (COND ((< |h| |l|) (SPADCALL (QREFELT $ 29))) ('T (SPADCALL (SPADCALL |x| (PROG1 (LETT #1# |l| |STAGG-;elt;AUsA;6|) (|check-subtype| (>= #1# 0) '(|NonNegativeInteger|) #1#)) (QREFELT $ 22)) (PROG1 (LETT #2# (+ (- |h| |l|) 1) |STAGG-;elt;AUsA;6|) (|check-subtype| (>= #2# 0) '(|NonNegativeInteger|) #2#)) (QREFELT $ 30))))))))))))) (DEFUN |STAGG-;concat;3A;7| (|x| |y| $) (SPADCALL (SPADCALL |x| (QREFELT $ 27)) |y| (QREFELT $ 32))) (DEFUN |STAGG-;concat;LA;8| (|l| $) (COND ((NULL |l|) (SPADCALL (QREFELT $ 29))) ('T (SPADCALL (SPADCALL (|SPADfirst| |l|) (QREFELT $ 27)) (SPADCALL (CDR |l|) (QREFELT $ 35)) (QREFELT $ 32))))) (DEFUN |STAGG-;map!;M2A;9| (|f| |l| $) (PROG (|y|) (RETURN (SEQ (LETT |y| |l| |STAGG-;map!;M2A;9|) (SEQ G190 (COND ((NULL (SPADCALL (SPADCALL |l| (QREFELT $ 18)) (QREFELT $ 10))) (GO G191))) (SEQ (SPADCALL |l| (SPADCALL (SPADCALL |l| (QREFELT $ 19)) |f|) (QREFELT $ 37)) (EXIT (LETT |l| (SPADCALL |l| (QREFELT $ 13)) |STAGG-;map!;M2A;9|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT |y|))))) (DEFUN |STAGG-;fill!;ASA;10| (|x| |s| $) (PROG (|y|) (RETURN (SEQ (LETT |y| |x| |STAGG-;fill!;ASA;10|) (SEQ G190 (COND ((NULL (SPADCALL (SPADCALL |y| (QREFELT $ 18)) (QREFELT $ 10))) (GO G191))) (SEQ (SPADCALL |y| |s| (QREFELT $ 37)) (EXIT (LETT |y| (SPADCALL |y| (QREFELT $ 13)) |STAGG-;fill!;ASA;10|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT |x|))))) (DEFUN |STAGG-;setelt;AI2S;11| (|x| |i| |s| $) (PROG (#0=#:G1437) (RETURN (SEQ (LETT |i| (- |i| (SPADCALL |x| (QREFELT $ 21))) |STAGG-;setelt;AI2S;11|) (COND ((OR (< |i| 0) (SPADCALL (LETT |x| (SPADCALL |x| (PROG1 (LETT #0# |i| |STAGG-;setelt;AI2S;11|) (|check-subtype| (>= #0# 0) '(|NonNegativeInteger|) #0#)) (QREFELT $ 22)) |STAGG-;setelt;AI2S;11|) (QREFELT $ 18))) (EXIT (|error| "index out of range")))) (EXIT (SPADCALL |x| |s| (QREFELT $ 37))))))) (DEFUN |STAGG-;setelt;AUs2S;12| (|x| |i| |s| $) (PROG (|l| |h| #0=#:G1442 #1=#:G1443 |z| |y|) (RETURN (SEQ (LETT |l| (- (SPADCALL |i| (QREFELT $ 25)) (SPADCALL |x| (QREFELT $ 21))) |STAGG-;setelt;AUs2S;12|) (EXIT (COND ((< |l| 0) (|error| "index out of range")) ('T (SEQ (LETT |h| (COND ((SPADCALL |i| (QREFELT $ 26)) (- (SPADCALL |i| (QREFELT $ 28)) (SPADCALL |x| (QREFELT $ 21)))) ('T (SPADCALL |x| (QREFELT $ 42)))) |STAGG-;setelt;AUs2S;12|) (EXIT (COND ((< |h| |l|) |s|) ('T (SEQ (LETT |y| (SPADCALL |x| (PROG1 (LETT #0# |l| |STAGG-;setelt;AUs2S;12|) (|check-subtype| (>= #0# 0) '(|NonNegativeInteger|) #0#)) (QREFELT $ 22)) |STAGG-;setelt;AUs2S;12|) (LETT |z| (SPADCALL |y| (PROG1 (LETT #1# (+ (- |h| |l|) 1) |STAGG-;setelt;AUs2S;12|) (|check-subtype| (>= #1# 0) '(|NonNegativeInteger|) #1#)) (QREFELT $ 22)) |STAGG-;setelt;AUs2S;12|) (SEQ G190 (COND ((NULL (SPADCALL (SPADCALL |y| |z| (QREFELT $ 43)) (QREFELT $ 10))) (GO G191))) (SEQ (SPADCALL |y| |s| (QREFELT $ 37)) (EXIT (LETT |y| (SPADCALL |y| (QREFELT $ 13)) |STAGG-;setelt;AUs2S;12|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT |s|))))))))))))) (DEFUN |STAGG-;concat!;3A;13| (|x| |y| $) (SEQ (COND ((SPADCALL |x| (QREFELT $ 18)) |y|) ('T (SEQ (SPADCALL (SPADCALL |x| (QREFELT $ 45)) |y| (QREFELT $ 46)) (EXIT |x|)))))) (DEFUN |StreamAggregate&| (|#1| |#2|) (PROG (|dv$1| |dv$2| |dv$| $ |pv$|) (RETURN (PROGN (LETT |dv$1| (|devaluate| |#1|) . #0=(|StreamAggregate&|)) (LETT |dv$2| (|devaluate| |#2|) . #0#) (LETT |dv$| (LIST '|StreamAggregate&| |dv$1| |dv$2|) . #0#) (LETT $ (GETREFV 52) . #0#) (QSETREFV $ 0 |dv$|) (QSETREFV $ 3 (LETT |pv$| (|buildPredVector| 0 0 NIL) . #0#)) (|stuffDomainSlots| $) (QSETREFV $ 6 |#1|) (QSETREFV $ 7 |#2|) (COND ((|HasAttribute| |#1| '|shallowlyMutable|) (PROGN (QSETREFV $ 33 (CONS (|dispatchFunction| |STAGG-;concat;3A;7|) $)) (QSETREFV $ 36 (CONS (|dispatchFunction| |STAGG-;concat;LA;8|) $)) (QSETREFV $ 39 (CONS (|dispatchFunction| |STAGG-;map!;M2A;9|) $)) (QSETREFV $ 40 (CONS (|dispatchFunction| |STAGG-;fill!;ASA;10|) $)) (QSETREFV $ 41 (CONS (|dispatchFunction| |STAGG-;setelt;AI2S;11|) $)) (QSETREFV $ 44 (CONS (|dispatchFunction| |STAGG-;setelt;AUs2S;12|) $)) (QSETREFV $ 47 (CONS (|dispatchFunction| |STAGG-;concat!;3A;13|) $))))) $)))) (MAKEPROP '|StreamAggregate&| '|infovec| (LIST '#(NIL NIL NIL NIL NIL NIL (|local| |#1|) (|local| |#2|) (|Boolean|) (0 . |cyclic?|) (5 . |not|) |STAGG-;explicitlyFinite?;AB;1| |STAGG-;possiblyInfinite?;AB;2| (10 . |rest|) (|List| 7) (15 . |construct|) (|NonNegativeInteger|) |STAGG-;first;ANniA;3| (20 . |empty?|) (25 . |first|) (|Integer|) (30 . |minIndex|) (35 . |rest|) |STAGG-;elt;AIS;5| (|UniversalSegment| 20) (41 . |lo|) (46 . |hasHi|) (51 . |copy|) (56 . |hi|) (61 . |empty|) (65 . |first|) |STAGG-;elt;AUsA;6| (71 . |concat!|) (77 . |concat|) (|List| $) (83 . |concat|) (88 . |concat|) (93 . |setfirst!|) (|Mapping| 7 7) (99 . |map!|) (105 . |fill!|) (111 . |setelt|) (118 . |maxIndex|) (123 . |eq?|) (129 . |setelt|) (136 . |tail|) (141 . |setrest!|) (147 . |concat!|) '"rest" '"last" '"first" '"value") '#(|setelt| 153 |possiblyInfinite?| 167 |map!| 172 |first| 178 |fill!| 184 |explicitlyFinite?| 190 |elt| 195 |concat!| 207 |concat| 213) 'NIL (CONS (|makeByteWordVec2| 1 'NIL) (CONS '#() (CONS '#() (|makeByteWordVec2| 47 '(1 6 8 0 9 1 8 0 0 10 1 6 0 0 13 1 6 0 14 15 1 6 8 0 18 1 6 7 0 19 1 6 20 0 21 2 6 0 0 16 22 1 24 20 0 25 1 24 8 0 26 1 6 0 0 27 1 24 20 0 28 0 6 0 29 2 6 0 0 16 30 2 6 0 0 0 32 2 0 0 0 0 33 1 6 0 34 35 1 0 0 34 36 2 6 7 0 7 37 2 0 0 38 0 39 2 0 0 0 7 40 3 0 7 0 20 7 41 1 6 20 0 42 2 6 8 0 0 43 3 0 7 0 24 7 44 1 6 0 0 45 2 6 0 0 0 46 2 0 0 0 0 47 3 0 7 0 20 7 41 3 0 7 0 24 7 44 1 0 8 0 12 2 0 0 38 0 39 2 0 0 0 16 17 2 0 0 0 7 40 1 0 8 0 11 2 0 7 0 20 23 2 0 0 0 24 31 2 0 0 0 0 47 1 0 0 34 36 2 0 0 0 0 33))))) '|lookupComplete|)) @ \section{category LNAGG LinearAggregate} <<category LNAGG LinearAggregate>>= )abbrev category LNAGG LinearAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A linear aggregate is an aggregate whose elements are indexed by integers. ++ Examples of linear aggregates are strings, lists, and ++ arrays. ++ Most of the exported operations for linear aggregates are non-destructive ++ but are not always efficient for a particular aggregate. ++ For example, \spadfun{concat} of two lists needs only to copy its first ++ argument, whereas \spadfun{concat} of two arrays needs to copy both arguments. ++ Most of the operations exported here apply to infinite objects (e.g. streams) ++ as well to finite ones. ++ For finite linear aggregates, see \spadtype{FiniteLinearAggregate}. LinearAggregate(S:Type): Category == Join(IndexedAggregate(Integer, S), Collection(S)) with new : (NonNegativeInteger,S) -> % ++ new(n,x) returns \axiom{fill!(new n,x)}. concat: (%,S) -> % ++ concat(u,x) returns aggregate u with additional element x at the end. ++ Note: for lists, \axiom{concat(u,x) == concat(u,[x])} concat: (S,%) -> % ++ concat(x,u) returns aggregate u with additional element at the front. ++ Note: for lists: \axiom{concat(x,u) == concat([x],u)}. concat: (%,%) -> % ++ concat(u,v) returns an aggregate consisting of the elements of u ++ followed by the elements of v. ++ Note: if \axiom{w = concat(u,v)} then \axiom{w.i = u.i for i in indices u} ++ and \axiom{w.(j + maxIndex u) = v.j for j in indices v}. concat: List % -> % ++ concat(u), where u is a lists of aggregates \axiom{[a,b,...,c]}, returns ++ a single aggregate consisting of the elements of \axiom{a} ++ followed by those ++ of b followed ... by the elements of c. ++ Note: \axiom{concat(a,b,...,c) = concat(a,concat(b,...,c))}. map: ((S,S)->S,%,%) -> % ++ map(f,u,v) returns a new collection w with elements \axiom{z = f(x,y)} ++ for corresponding elements x and y from u and v. ++ Note: for linear aggregates, \axiom{w.i = f(u.i,v.i)}. elt: (%,UniversalSegment(Integer)) -> % ++ elt(u,i..j) (also written: \axiom{a(i..j)}) returns the aggregate of ++ elements \axiom{u} for k from i to j in that order. ++ Note: in general, \axiom{a.s = [a.k for i in s]}. delete: (%,Integer) -> % ++ delete(u,i) returns a copy of u with the \axiom{i}th element deleted. ++ Note: for lists, \axiom{delete(a,i) == concat(a(0..i - 1),a(i + 1,..))}. delete: (%,UniversalSegment(Integer)) -> % ++ delete(u,i..j) returns a copy of u with the \axiom{i}th through ++ \axiom{j}th element deleted. ++ Note: \axiom{delete(a,i..j) = concat(a(0..i-1),a(j+1..))}. insert: (S,%,Integer) -> % ++ insert(x,u,i) returns a copy of u having x as its \axiom{i}th element. ++ Note: \axiom{insert(x,a,k) = concat(concat(a(0..k-1),x),a(k..))}. insert: (%,%,Integer) -> % ++ insert(v,u,k) returns a copy of u having v inserted beginning at the ++ \axiom{i}th element. ++ Note: \axiom{insert(v,u,k) = concat( u(0..k-1), v, u(k..) )}. if % has shallowlyMutable then setelt: (%,UniversalSegment(Integer),S) -> S ++ setelt(u,i..j,x) (also written: \axiom{u(i..j) := x}) destructively ++ replaces each element in the segment \axiom{u(i..j)} by x. ++ The value x is returned. ++ Note: u is destructively change so ++ that \axiom{u.k := x for k in i..j}; ++ its length remains unchanged. add indices a == [i for i in minIndex a .. maxIndex a] index?(i, a) == i >= minIndex a and i <= maxIndex a concat(a:%, x:S) == concat(a, new(1, x)) concat(x:S, y:%) == concat(new(1, x), y) insert(x:S, a:%, i:Integer) == insert(new(1, x), a, i) if % has finiteAggregate then maxIndex l == #l - 1 + minIndex l --if % has shallowlyMutable then new(n, s) == fill_!(new n, s) @ \section{LNAGG.lsp BOOTSTRAP} {\bf LNAGG} depends on a chain of files. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf LNAGG} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf LNAGG.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <<LNAGG.lsp BOOTSTRAP>>= (/VERSIONCHECK 2) (DEFPARAMETER |LinearAggregate;CAT| 'NIL) (DEFPARAMETER |LinearAggregate;AL| 'NIL) (DEFUN |LinearAggregate| (#0=#:G1400) (LET (#1=#:G1401) (COND ((SETQ #1# (|assoc| (|devaluate| #0#) |LinearAggregate;AL|)) (CDR #1#)) (T (SETQ |LinearAggregate;AL| (|cons5| (CONS (|devaluate| #0#) (SETQ #1# (|LinearAggregate;| #0#))) |LinearAggregate;AL|)) #1#)))) (DEFUN |LinearAggregate;| (|t#1|) (PROG (#0=#:G1399) (RETURN (PROG1 (LETT #0# (|sublisV| (PAIR '(|t#1|) (LIST (|devaluate| |t#1|))) (|sublisV| (PAIR '(#1=#:G1398) (LIST '(|Integer|))) (COND (|LinearAggregate;CAT|) ('T (LETT |LinearAggregate;CAT| (|Join| (|IndexedAggregate| '#1# '|t#1|) (|Collection| '|t#1|) (|mkCategory| '|domain| '(((|new| ($ (|NonNegativeInteger|) |t#1|)) T) ((|concat| ($ $ |t#1|)) T) ((|concat| ($ |t#1| $)) T) ((|concat| ($ $ $)) T) ((|concat| ($ (|List| $))) T) ((|map| ($ (|Mapping| |t#1| |t#1| |t#1|) $ $)) T) ((|elt| ($ $ (|UniversalSegment| (|Integer|)))) T) ((|delete| ($ $ (|Integer|))) T) ((|delete| ($ $ (|UniversalSegment| (|Integer|)))) T) ((|insert| ($ |t#1| $ (|Integer|))) T) ((|insert| ($ $ $ (|Integer|))) T) ((|setelt| (|t#1| $ (|UniversalSegment| (|Integer|)) |t#1|)) (|has| $ (ATTRIBUTE |shallowlyMutable|)))) NIL '((|UniversalSegment| (|Integer|)) (|Integer|) (|List| $) (|NonNegativeInteger|)) NIL)) . #2=(|LinearAggregate|)))))) . #2#) (SETELT #0# 0 (LIST '|LinearAggregate| (|devaluate| |t#1|))))))) @ \section{LNAGG-.lsp BOOTSTRAP} {\bf LNAGG-} depends on {\bf LNAGG}. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf LNAGG-} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf LNAGG-.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <<LNAGG-.lsp BOOTSTRAP>>= (/VERSIONCHECK 2) (DEFUN |LNAGG-;indices;AL;1| (|a| $) (PROG (#0=#:G1404 |i| #1=#:G1405) (RETURN (SEQ (PROGN (LETT #0# NIL |LNAGG-;indices;AL;1|) (SEQ (LETT |i| (SPADCALL |a| (QREFELT $ 9)) |LNAGG-;indices;AL;1|) (LETT #1# (SPADCALL |a| (QREFELT $ 10)) |LNAGG-;indices;AL;1|) G190 (COND ((> |i| #1#) (GO G191))) (SEQ (EXIT (LETT #0# (CONS |i| #0#) |LNAGG-;indices;AL;1|))) (LETT |i| (+ |i| 1) |LNAGG-;indices;AL;1|) (GO G190) G191 (EXIT (NREVERSE0 #0#)))))))) (DEFUN |LNAGG-;index?;IAB;2| (|i| |a| $) (COND ((< |i| (SPADCALL |a| (QREFELT $ 9))) 'NIL) ('T (SPADCALL (< (SPADCALL |a| (QREFELT $ 10)) |i|) (QREFELT $ 14))))) (DEFUN |LNAGG-;concat;ASA;3| (|a| |x| $) (SPADCALL |a| (SPADCALL 1 |x| (QREFELT $ 17)) (QREFELT $ 18))) (DEFUN |LNAGG-;concat;S2A;4| (|x| |y| $) (SPADCALL (SPADCALL 1 |x| (QREFELT $ 17)) |y| (QREFELT $ 18))) (DEFUN |LNAGG-;insert;SAIA;5| (|x| |a| |i| $) (SPADCALL (SPADCALL 1 |x| (QREFELT $ 17)) |a| |i| (QREFELT $ 21))) (DEFUN |LNAGG-;maxIndex;AI;6| (|l| $) (+ (- (SPADCALL |l| (QREFELT $ 23)) 1) (SPADCALL |l| (QREFELT $ 9)))) (DEFUN |LinearAggregate&| (|#1| |#2|) (PROG (|dv$1| |dv$2| |dv$| $ |pv$|) (RETURN (PROGN (LETT |dv$1| (|devaluate| |#1|) . #0=(|LinearAggregate&|)) (LETT |dv$2| (|devaluate| |#2|) . #0#) (LETT |dv$| (LIST '|LinearAggregate&| |dv$1| |dv$2|) . #0#) (LETT $ (GETREFV 26) . #0#) (QSETREFV $ 0 |dv$|) (QSETREFV $ 3 (LETT |pv$| (|buildPredVector| 0 0 (LIST (|HasAttribute| |#1| '|shallowlyMutable|))) . #0#)) (|stuffDomainSlots| $) (QSETREFV $ 6 |#1|) (QSETREFV $ 7 |#2|) (COND ((|HasAttribute| |#1| '|finiteAggregate|) (QSETREFV $ 24 (CONS (|dispatchFunction| |LNAGG-;maxIndex;AI;6|) $)))) $)))) (MAKEPROP '|LinearAggregate&| '|infovec| (LIST '#(NIL NIL NIL NIL NIL NIL (|local| |#1|) (|local| |#2|) (|Integer|) (0 . |minIndex|) (5 . |maxIndex|) (|List| 8) |LNAGG-;indices;AL;1| (|Boolean|) (10 . |not|) |LNAGG-;index?;IAB;2| (|NonNegativeInteger|) (15 . |new|) (21 . |concat|) |LNAGG-;concat;ASA;3| |LNAGG-;concat;S2A;4| (27 . |insert|) |LNAGG-;insert;SAIA;5| (34 . |#|) (39 . |maxIndex|) (|List| $)) '#(|maxIndex| 44 |insert| 49 |indices| 56 |index?| 61 |concat| 67) 'NIL (CONS (|makeByteWordVec2| 1 'NIL) (CONS '#() (CONS '#() (|makeByteWordVec2| 24 '(1 6 8 0 9 1 6 8 0 10 1 13 0 0 14 2 6 0 16 7 17 2 6 0 0 0 18 3 6 0 0 0 8 21 1 6 16 0 23 1 0 8 0 24 1 0 8 0 24 3 0 0 7 0 8 22 1 0 11 0 12 2 0 13 8 0 15 2 0 0 0 7 19 2 0 0 7 0 20))))) '|lookupComplete|)) @ \section{category FLAGG FiniteLinearAggregate} <<category FLAGG FiniteLinearAggregate>>= )abbrev category FLAGG FiniteLinearAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A finite linear aggregate is a linear aggregate of finite length. ++ The finite property of the aggregate adds several exports to the ++ list of exports from \spadtype{LinearAggregate} such as ++ \spadfun{reverse}, \spadfun{sort}, and so on. FiniteLinearAggregate(S:Type): Category == LinearAggregate S with finiteAggregate merge: ((S,S)->Boolean,%,%) -> % ++ merge(p,a,b) returns an aggregate c which merges \axiom{a} and b. ++ The result is produced by examining each element x of \axiom{a} and y ++ of b successively. If \axiom{p(x,y)} is true, then x is inserted into ++ the result; otherwise y is inserted. If x is chosen, the next element ++ of \axiom{a} is examined, and so on. When all the elements of one ++ aggregate are examined, the remaining elements of the other ++ are appended. ++ For example, \axiom{merge(<,[1,3],[2,7,5])} returns \axiom{[1,2,3,7,5]}. reverse: % -> % ++ reverse(a) returns a copy of \axiom{a} with elements in reverse order. sort: ((S,S)->Boolean,%) -> % ++ sort(p,a) returns a copy of \axiom{a} sorted using total ordering predicate p. sorted?: ((S,S)->Boolean,%) -> Boolean ++ sorted?(p,a) tests if \axiom{a} is sorted according to predicate p. position: (S->Boolean, %) -> Integer ++ position(p,a) returns the index i of the first x in \axiom{a} such that ++ \axiom{p(x)} is true, and \axiom{minIndex(a) - 1} if there is no such x. if S has SetCategory then position: (S, %) -> Integer ++ position(x,a) returns the index i of the first occurrence of x in a, ++ and \axiom{minIndex(a) - 1} if there is no such x. position: (S,%,Integer) -> Integer ++ position(x,a,n) returns the index i of the first occurrence of x in ++ \axiom{a} where \axiom{i >= n}, and \axiom{minIndex(a) - 1} if no such x is found. if S has OrderedSet then OrderedSet merge: (%,%) -> % ++ merge(u,v) merges u and v in ascending order. ++ Note: \axiom{merge(u,v) = merge(<=,u,v)}. sort: % -> % ++ sort(u) returns an u with elements in ascending order. ++ Note: \axiom{sort(u) = sort(<=,u)}. sorted?: % -> Boolean ++ sorted?(u) tests if the elements of u are in ascending order. if % has shallowlyMutable then copyInto_!: (%,%,Integer) -> % ++ copyInto!(u,v,i) returns aggregate u containing a copy of ++ v inserted at element i. reverse_!: % -> % ++ reverse!(u) returns u with its elements in reverse order. sort_!: ((S,S)->Boolean,%) -> % ++ sort!(p,u) returns u with its elements ordered by p. if S has OrderedSet then sort_!: % -> % ++ sort!(u) returns u with its elements in ascending order. add if S has SetCategory then position(x:S, t:%) == position(x, t, minIndex t) if S has OrderedSet then -- sorted? l == sorted?(_<$S, l) sorted? l == sorted?(#1 < #2 or #1 = #2, l) merge(x, y) == merge(_<$S, x, y) sort l == sort(_<$S, l) if % has shallowlyMutable then reverse x == reverse_! copy x sort(f, l) == sort_!(f, copy l) reverse x == reverse_! copy x if S has OrderedSet then sort_! l == sort_!(_<$S, l) @ \section{category A1AGG OneDimensionalArrayAggregate} <<category A1AGG OneDimensionalArrayAggregate>>= )abbrev category A1AGG OneDimensionalArrayAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ One-dimensional-array aggregates serves as models for one-dimensional arrays. ++ Categorically, these aggregates are finite linear aggregates ++ with the \spadatt{shallowlyMutable} property, that is, any component of ++ the array may be changed without affecting the ++ identity of the overall array. ++ Array data structures are typically represented by a fixed area in storage and ++ therefore cannot efficiently grow or shrink on demand as can list structures ++ (see however \spadtype{FlexibleArray} for a data structure which ++ is a cross between a list and an array). ++ Iteration over, and access to, elements of arrays is extremely fast ++ (and often can be optimized to open-code). ++ Insertion and deletion however is generally slow since an entirely new ++ data structure must be created for the result. OneDimensionalArrayAggregate(S:Type): Category == FiniteLinearAggregate S with shallowlyMutable add parts x == [qelt(x, i) for i in minIndex x .. maxIndex x] sort_!(f, a) == quickSort(f, a)$FiniteLinearAggregateSort(S, %) any?(f, a) == for i in minIndex a .. maxIndex a repeat f qelt(a, i) => return true false every?(f, a) == for i in minIndex a .. maxIndex a repeat not(f qelt(a, i)) => return false true position(f:S -> Boolean, a:%) == for i in minIndex a .. maxIndex a repeat f qelt(a, i) => return i minIndex(a) - 1 find(f, a) == for i in minIndex a .. maxIndex a repeat f qelt(a, i) => return qelt(a, i) "failed" count(f:S->Boolean, a:%) == n:NonNegativeInteger := 0 for i in minIndex a .. maxIndex a repeat if f(qelt(a, i)) then n := n+1 n map_!(f, a) == for i in minIndex a .. maxIndex a repeat qsetelt_!(a, i, f qelt(a, i)) a setelt(a:%, s:UniversalSegment(Integer), x:S) == l := lo s; h := if hasHi s then hi s else maxIndex a l < minIndex a or h > maxIndex a => error "index out of range" for k in l..h repeat qsetelt_!(a, k, x) x reduce(f, a) == empty? a => error "cannot reduce an empty aggregate" r := qelt(a, m := minIndex a) for k in m+1 .. maxIndex a repeat r := f(r, qelt(a, k)) r reduce(f, a, identity) == for k in minIndex a .. maxIndex a repeat identity := f(identity, qelt(a, k)) identity if S has SetCategory then reduce(f, a, identity,absorber) == for k in minIndex a .. maxIndex a while identity ^= absorber repeat identity := f(identity, qelt(a, k)) identity -- this is necessary since new has disappeared. stupidnew: (NonNegativeInteger, %, %) -> % stupidget: List % -> S -- a and b are not both empty if n > 0 stupidnew(n, a, b) == zero? n => empty() new(n, (empty? a => qelt(b, minIndex b); qelt(a, minIndex a))) -- at least one element of l must be non-empty stupidget l == for a in l repeat not empty? a => return first a error "Should not happen" map(f, a, b) == m := max(minIndex a, minIndex b) n := min(maxIndex a, maxIndex b) l := max(0, n - m + 1)::NonNegativeInteger c := stupidnew(l, a, b) for i in minIndex(c).. for j in m..n repeat qsetelt_!(c, i, f(qelt(a, j), qelt(b, j))) c -- map(f, a, b, x) == -- m := min(minIndex a, minIndex b) -- n := max(maxIndex a, maxIndex b) -- l := (n - m + 1)::NonNegativeInteger -- c := new l -- for i in minIndex(c).. for j in m..n repeat -- qsetelt_!(c, i, f(a(j, x), b(j, x))) -- c merge(f, a, b) == r := stupidnew(#a + #b, a, b) i := minIndex a m := maxIndex a j := minIndex b n := maxIndex b for k in minIndex(r).. while i <= m and j <= n repeat if f(qelt(a, i), qelt(b, j)) then qsetelt_!(r, k, qelt(a, i)) i := i+1 else qsetelt_!(r, k, qelt(b, j)) j := j+1 for k in k.. for i in i..m repeat qsetelt_!(r, k, elt(a, i)) for k in k.. for j in j..n repeat qsetelt_!(r, k, elt(b, j)) r elt(a:%, s:UniversalSegment(Integer)) == l := lo s h := if hasHi s then hi s else maxIndex a l < minIndex a or h > maxIndex a => error "index out of range" r := stupidnew(max(0, h - l + 1)::NonNegativeInteger, a, a) for k in minIndex r.. for i in l..h repeat qsetelt_!(r, k, qelt(a, i)) r insert(a:%, b:%, i:Integer) == m := minIndex b n := maxIndex b i < m or i > n => error "index out of range" y := stupidnew(#a + #b, a, b) for k in minIndex y.. for j in m..i-1 repeat qsetelt_!(y, k, qelt(b, j)) for k in k.. for j in minIndex a .. maxIndex a repeat qsetelt_!(y, k, qelt(a, j)) for k in k.. for j in i..n repeat qsetelt_!(y, k, qelt(b, j)) y copy x == y := stupidnew(#x, x, x) for i in minIndex x .. maxIndex x for j in minIndex y .. repeat qsetelt_!(y, j, qelt(x, i)) y copyInto_!(y, x, s) == s < minIndex y or s + #x > maxIndex y + 1 => error "index out of range" for i in minIndex x .. maxIndex x for j in s.. repeat qsetelt_!(y, j, qelt(x, i)) y construct l == -- a := new(#l) empty? l => empty() a := new(#l, first l) for i in minIndex(a).. for x in l repeat qsetelt_!(a, i, x) a delete(a:%, s:UniversalSegment(Integer)) == l := lo s; h := if hasHi s then hi s else maxIndex a l < minIndex a or h > maxIndex a => error "index out of range" h < l => copy a r := stupidnew((#a - h + l - 1)::NonNegativeInteger, a, a) for k in minIndex(r).. for i in minIndex a..l-1 repeat qsetelt_!(r, k, qelt(a, i)) for k in k.. for i in h+1 .. maxIndex a repeat qsetelt_!(r, k, qelt(a, i)) r delete(x:%, i:Integer) == i < minIndex x or i > maxIndex x => error "index out of range" y := stupidnew((#x - 1)::NonNegativeInteger, x, x) for i in minIndex(y).. for j in minIndex x..i-1 repeat qsetelt_!(y, i, qelt(x, j)) for i in i .. for j in i+1 .. maxIndex x repeat qsetelt_!(y, i, qelt(x, j)) y reverse_! x == m := minIndex x n := maxIndex x for i in 0..((n-m) quo 2) repeat swap_!(x, m+i, n-i) x concat l == empty? l => empty() n := _+/[#a for a in l] i := minIndex(r := new(n, stupidget l)) for a in l repeat copyInto_!(r, a, i) i := i + #a r sorted?(f, a) == for i in minIndex(a)..maxIndex(a)-1 repeat not f(qelt(a, i), qelt(a, i + 1)) => return false true concat(x:%, y:%) == z := stupidnew(#x + #y, x, y) copyInto_!(z, x, i := minIndex z) copyInto_!(z, y, i + #x) z if S has CoercibleTo(OutputForm) then coerce(r:%):OutputForm == bracket commaSeparate [qelt(r, k)::OutputForm for k in minIndex r .. maxIndex r] if S has SetCategory then x = y == #x ^= #y => false for i in minIndex x .. maxIndex x repeat not(qelt(x, i) = qelt(y, i)) => return false true position(x:S, t:%, s:Integer) == n := maxIndex t s < minIndex t or s > n => error "index out of range" for k in s..n repeat qelt(t, k) = x => return k minIndex(t) - 1 if S has OrderedSet then a < b == for i in minIndex a .. maxIndex a for j in minIndex b .. maxIndex b repeat qelt(a, i) ^= qelt(b, j) => return a.i < b.j #a < #b @ \section{category ELAGG ExtensibleLinearAggregate} <<category ELAGG ExtensibleLinearAggregate>>= )abbrev category ELAGG ExtensibleLinearAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ An extensible aggregate is one which allows insertion and deletion of entries. ++ These aggregates are models of lists and streams which are represented ++ by linked structures so as to make insertion, deletion, and ++ concatenation efficient. However, access to elements of these ++ extensible aggregates is generally slow since access is made from the end. ++ See \spadtype{FlexibleArray} for an exception. ExtensibleLinearAggregate(S:Type):Category == LinearAggregate S with shallowlyMutable concat_!: (%,S) -> % ++ concat!(u,x) destructively adds element x to the end of u. concat_!: (%,%) -> % ++ concat!(u,v) destructively appends v to the end of u. ++ v is unchanged delete_!: (%,Integer) -> % ++ delete!(u,i) destructively deletes the \axiom{i}th element of u. delete_!: (%,UniversalSegment(Integer)) -> % ++ delete!(u,i..j) destructively deletes elements u.i through u.j. remove_!: (S->Boolean,%) -> % ++ remove!(p,u) destructively removes all elements x of ++ u such that \axiom{p(x)} is true. insert_!: (S,%,Integer) -> % ++ insert!(x,u,i) destructively inserts x into u at position i. insert_!: (%,%,Integer) -> % ++ insert!(v,u,i) destructively inserts aggregate v into u at position i. merge_!: ((S,S)->Boolean,%,%) -> % ++ merge!(p,u,v) destructively merges u and v using predicate p. select_!: (S->Boolean,%) -> % ++ select!(p,u) destructively changes u by keeping only values x such that ++ \axiom{p(x)}. if S has SetCategory then remove_!: (S,%) -> % ++ remove!(x,u) destructively removes all values x from u. removeDuplicates_!: % -> % ++ removeDuplicates!(u) destructively removes duplicates from u. if S has OrderedSet then merge_!: (%,%) -> % ++ merge!(u,v) destructively merges u and v in ascending order. add delete(x:%, i:Integer) == delete_!(copy x, i) delete(x:%, i:UniversalSegment(Integer)) == delete_!(copy x, i) remove(f:S -> Boolean, x:%) == remove_!(f, copy x) insert(s:S, x:%, i:Integer) == insert_!(s, copy x, i) insert(w:%, x:%, i:Integer) == insert_!(copy w, copy x, i) select(f, x) == select_!(f, copy x) concat(x:%, y:%) == concat_!(copy x, y) concat(x:%, y:S) == concat_!(copy x, new(1, y)) concat_!(x:%, y:S) == concat_!(x, new(1, y)) if S has SetCategory then remove(s:S, x:%) == remove_!(s, copy x) remove_!(s:S, x:%) == remove_!(#1 = s, x) removeDuplicates(x:%) == removeDuplicates_!(copy x) if S has OrderedSet then merge_!(x, y) == merge_!(_<$S, x, y) @ \section{category LSAGG ListAggregate} <<category LSAGG ListAggregate>>= )abbrev category LSAGG ListAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A list aggregate is a model for a linked list data structure. ++ A linked list is a versatile ++ data structure. Insertion and deletion are efficient and ++ searching is a linear operation. ListAggregate(S:Type): Category == Join(StreamAggregate S, FiniteLinearAggregate S, ExtensibleLinearAggregate S) with list: S -> % ++ list(x) returns the list of one element x. add cycleMax ==> 1000 mergeSort: ((S, S) -> Boolean, %, Integer) -> % sort_!(f, l) == mergeSort(f, l, #l) list x == concat(x, empty()) reduce(f, x) == empty? x => error "reducing over an empty list needs the 3 argument form" reduce(f, rest x, first x) merge(f, p, q) == merge_!(f, copy p, copy q) select_!(f, x) == while not empty? x and not f first x repeat x := rest x empty? x => x y := x z := rest y while not empty? z repeat if f first z then (y := z; z := rest z) else (z := rest z; setrest_!(y, z)) x merge_!(f, p, q) == empty? p => q empty? q => p eq?(p, q) => error "cannot merge a list into itself" if f(first p, first q) then (r := t := p; p := rest p) else (r := t := q; q := rest q) while not empty? p and not empty? q repeat if f(first p, first q) then (setrest_!(t, p); t := p; p := rest p) else (setrest_!(t, q); t := q; q := rest q) setrest_!(t, if empty? p then q else p) r insert_!(s:S, x:%, i:Integer) == i < (m := minIndex x) => error "index out of range" i = m => concat(s, x) y := rest(x, (i - 1 - m)::NonNegativeInteger) z := rest y setrest_!(y, concat(s, z)) x insert_!(w:%, x:%, i:Integer) == i < (m := minIndex x) => error "index out of range" i = m => concat_!(w, x) y := rest(x, (i - 1 - m)::NonNegativeInteger) z := rest y setrest_!(y, w) concat_!(y, z) x remove_!(f:S -> Boolean, x:%) == while not empty? x and f first x repeat x := rest x empty? x => x p := x q := rest x while not empty? q repeat if f first q then q := setrest_!(p, rest q) else (p := q; q := rest q) x delete_!(x:%, i:Integer) == i < (m := minIndex x) => error "index out of range" i = m => rest x y := rest(x, (i - 1 - m)::NonNegativeInteger) setrest_!(y, rest(y, 2)) x delete_!(x:%, i:UniversalSegment(Integer)) == (l := lo i) < (m := minIndex x) => error "index out of range" h := if hasHi i then hi i else maxIndex x h < l => x l = m => rest(x, (h + 1 - m)::NonNegativeInteger) t := rest(x, (l - 1 - m)::NonNegativeInteger) setrest_!(t, rest(t, (h - l + 2)::NonNegativeInteger)) x find(f, x) == while not empty? x and not f first x repeat x := rest x empty? x => "failed" first x position(f:S -> Boolean, x:%) == for k in minIndex(x).. while not empty? x and not f first x repeat x := rest x empty? x => minIndex(x) - 1 k mergeSort(f, p, n) == if n = 2 and f(first rest p, first p) then p := reverse_! p n < 3 => p l := (n quo 2)::NonNegativeInteger q := split_!(p, l) p := mergeSort(f, p, l) q := mergeSort(f, q, n - l) merge_!(f, p, q) sorted?(f, l) == empty? l => true p := rest l while not empty? p repeat not f(first l, first p) => return false p := rest(l := p) true reduce(f, x, i) == r := i while not empty? x repeat (r := f(r, first x); x := rest x) r if S has SetCategory then reduce(f, x, i,a) == r := i while not empty? x and r ^= a repeat r := f(r, first x) x := rest x r new(n, s) == l := empty() for k in 1..n repeat l := concat(s, l) l map(f, x, y) == z := empty() while not empty? x and not empty? y repeat z := concat(f(first x, first y), z) x := rest x y := rest y reverse_! z -- map(f, x, y, d) == -- z := empty() -- while not empty? x and not empty? y repeat -- z := concat(f(first x, first y), z) -- x := rest x -- y := rest y -- z := reverseInPlace z -- if not empty? x then -- z := concat_!(z, map(f(#1, d), x)) -- if not empty? y then -- z := concat_!(z, map(f(d, #1), y)) -- z reverse_! x == empty? x => x empty?(y := rest x) => x setrest_!(x, empty()) while not empty? y repeat z := rest y setrest_!(y, x) x := y y := z x copy x == y := empty() for k in 0.. while not empty? x repeat k = cycleMax and cyclic? x => error "cyclic list" y := concat(first x, y) x := rest x reverse_! y copyInto_!(y, x, s) == s < (m := minIndex y) => error "index out of range" z := rest(y, (s - m)::NonNegativeInteger) while not empty? z and not empty? x repeat setfirst_!(z, first x) x := rest x z := rest z y if S has SetCategory then position(w, x, s) == s < (m := minIndex x) => error "index out of range" x := rest(x, (s - m)::NonNegativeInteger) for k in s.. while not empty? x and w ^= first x repeat x := rest x empty? x => minIndex x - 1 k removeDuplicates_! l == p := l while not empty? p repeat p := setrest_!(p, remove_!(#1 = first p, rest p)) l if S has OrderedSet then x < y == while not empty? x and not empty? y repeat first x ^= first y => return(first x < first y) x := rest x y := rest y empty? x => not empty? y false @ \section{LSAGG.lsp BOOTSTRAP} {\bf LSAGG} depends on a chain of files. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf LSAGG} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf LSAGG.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <<LSAGG.lsp BOOTSTRAP>>= (/VERSIONCHECK 2) (DEFPARAMETER |ListAggregate;CAT| 'NIL) (DEFPARAMETER |ListAggregate;AL| 'NIL) (DEFUN |ListAggregate| (#0=#:G1431) (LET (#1=#:G1432) (COND ((SETQ #1# (|assoc| (|devaluate| #0#) |ListAggregate;AL|)) (CDR #1#)) (T (SETQ |ListAggregate;AL| (|cons5| (CONS (|devaluate| #0#) (SETQ #1# (|ListAggregate;| #0#))) |ListAggregate;AL|)) #1#)))) (DEFUN |ListAggregate;| (|t#1|) (PROG (#0=#:G1430) (RETURN (PROG1 (LETT #0# (|sublisV| (PAIR '(|t#1|) (LIST (|devaluate| |t#1|))) (COND (|ListAggregate;CAT|) ('T (LETT |ListAggregate;CAT| (|Join| (|StreamAggregate| '|t#1|) (|FiniteLinearAggregate| '|t#1|) (|ExtensibleLinearAggregate| '|t#1|) (|mkCategory| '|domain| '(((|list| ($ |t#1|)) T)) NIL 'NIL NIL)) . #1=(|ListAggregate|))))) . #1#) (SETELT #0# 0 (LIST '|ListAggregate| (|devaluate| |t#1|))))))) @ \section{LSAGG-.lsp BOOTSTRAP} {\bf LSAGG-} depends on {\bf LSAGG}. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf LSAGG-} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf LSAGG-.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <<LSAGG-.lsp BOOTSTRAP>>= (/VERSIONCHECK 2) (DEFUN |LSAGG-;sort!;M2A;1| (|f| |l| $) (|LSAGG-;mergeSort| |f| |l| (SPADCALL |l| (QREFELT $ 9)) $)) (DEFUN |LSAGG-;list;SA;2| (|x| $) (SPADCALL |x| (SPADCALL (QREFELT $ 12)) (QREFELT $ 13))) (DEFUN |LSAGG-;reduce;MAS;3| (|f| |x| $) (COND ((SPADCALL |x| (QREFELT $ 16)) (|error| "reducing over an empty list needs the 3 argument form")) ('T (SPADCALL |f| (SPADCALL |x| (QREFELT $ 17)) (SPADCALL |x| (QREFELT $ 18)) (QREFELT $ 20))))) (DEFUN |LSAGG-;merge;M3A;4| (|f| |p| |q| $) (SPADCALL |f| (SPADCALL |p| (QREFELT $ 22)) (SPADCALL |q| (QREFELT $ 22)) (QREFELT $ 23))) (DEFUN |LSAGG-;select!;M2A;5| (|f| |x| $) (PROG (|y| |z|) (RETURN (SEQ (SEQ G190 (COND ((NULL (COND ((SPADCALL |x| (QREFELT $ 16)) 'NIL) ('T (SPADCALL (SPADCALL (SPADCALL |x| (QREFELT $ 18)) |f|) (QREFELT $ 25))))) (GO G191))) (SEQ (EXIT (LETT |x| (SPADCALL |x| (QREFELT $ 17)) |LSAGG-;select!;M2A;5|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT (COND ((SPADCALL |x| (QREFELT $ 16)) |x|) ('T (SEQ (LETT |y| |x| |LSAGG-;select!;M2A;5|) (LETT |z| (SPADCALL |y| (QREFELT $ 17)) |LSAGG-;select!;M2A;5|) (SEQ G190 (COND ((NULL (SPADCALL (SPADCALL |z| (QREFELT $ 16)) (QREFELT $ 25))) (GO G191))) (SEQ (EXIT (COND ((SPADCALL (SPADCALL |z| (QREFELT $ 18)) |f|) (SEQ (LETT |y| |z| |LSAGG-;select!;M2A;5|) (EXIT (LETT |z| (SPADCALL |z| (QREFELT $ 17)) |LSAGG-;select!;M2A;5|)))) ('T (SEQ (LETT |z| (SPADCALL |z| (QREFELT $ 17)) |LSAGG-;select!;M2A;5|) (EXIT (SPADCALL |y| |z| (QREFELT $ 26)))))))) NIL (GO G190) G191 (EXIT NIL)) (EXIT |x|))))))))) (DEFUN |LSAGG-;merge!;M3A;6| (|f| |p| |q| $) (PROG (|r| |t|) (RETURN (SEQ (COND ((SPADCALL |p| (QREFELT $ 16)) |q|) ((SPADCALL |q| (QREFELT $ 16)) |p|) ((SPADCALL |p| |q| (QREFELT $ 29)) (|error| "cannot merge a list into itself")) ('T (SEQ (COND ((SPADCALL (SPADCALL |p| (QREFELT $ 18)) (SPADCALL |q| (QREFELT $ 18)) |f|) (SEQ (LETT |r| (LETT |t| |p| |LSAGG-;merge!;M3A;6|) |LSAGG-;merge!;M3A;6|) (EXIT (LETT |p| (SPADCALL |p| (QREFELT $ 17)) |LSAGG-;merge!;M3A;6|)))) ('T (SEQ (LETT |r| (LETT |t| |q| |LSAGG-;merge!;M3A;6|) |LSAGG-;merge!;M3A;6|) (EXIT (LETT |q| (SPADCALL |q| (QREFELT $ 17)) |LSAGG-;merge!;M3A;6|))))) (SEQ G190 (COND ((NULL (COND ((SPADCALL |p| (QREFELT $ 16)) 'NIL) ('T (SPADCALL (SPADCALL |q| (QREFELT $ 16)) (QREFELT $ 25))))) (GO G191))) (SEQ (EXIT (COND ((SPADCALL (SPADCALL |p| (QREFELT $ 18)) (SPADCALL |q| (QREFELT $ 18)) |f|) (SEQ (SPADCALL |t| |p| (QREFELT $ 26)) (LETT |t| |p| |LSAGG-;merge!;M3A;6|) (EXIT (LETT |p| (SPADCALL |p| (QREFELT $ 17)) |LSAGG-;merge!;M3A;6|)))) ('T (SEQ (SPADCALL |t| |q| (QREFELT $ 26)) (LETT |t| |q| |LSAGG-;merge!;M3A;6|) (EXIT (LETT |q| (SPADCALL |q| (QREFELT $ 17)) |LSAGG-;merge!;M3A;6|))))))) NIL (GO G190) G191 (EXIT NIL)) (SPADCALL |t| (COND ((SPADCALL |p| (QREFELT $ 16)) |q|) ('T |p|)) (QREFELT $ 26)) (EXIT |r|)))))))) (DEFUN |LSAGG-;insert!;SAIA;7| (|s| |x| |i| $) (PROG (|m| #0=#:G1464 |y| |z|) (RETURN (SEQ (LETT |m| (SPADCALL |x| (QREFELT $ 32)) |LSAGG-;insert!;SAIA;7|) (EXIT (COND ((< |i| |m|) (|error| "index out of range")) ((EQL |i| |m|) (SPADCALL |s| |x| (QREFELT $ 13))) ('T (SEQ (LETT |y| (SPADCALL |x| (PROG1 (LETT #0# (- (- |i| 1) |m|) |LSAGG-;insert!;SAIA;7|) (|check-subtype| (>= #0# 0) '(|NonNegativeInteger|) #0#)) (QREFELT $ 33)) |LSAGG-;insert!;SAIA;7|) (LETT |z| (SPADCALL |y| (QREFELT $ 17)) |LSAGG-;insert!;SAIA;7|) (SPADCALL |y| (SPADCALL |s| |z| (QREFELT $ 13)) (QREFELT $ 26)) (EXIT |x|))))))))) (DEFUN |LSAGG-;insert!;2AIA;8| (|w| |x| |i| $) (PROG (|m| #0=#:G1468 |y| |z|) (RETURN (SEQ (LETT |m| (SPADCALL |x| (QREFELT $ 32)) |LSAGG-;insert!;2AIA;8|) (EXIT (COND ((< |i| |m|) (|error| "index out of range")) ((EQL |i| |m|) (SPADCALL |w| |x| (QREFELT $ 35))) ('T (SEQ (LETT |y| (SPADCALL |x| (PROG1 (LETT #0# (- (- |i| 1) |m|) |LSAGG-;insert!;2AIA;8|) (|check-subtype| (>= #0# 0) '(|NonNegativeInteger|) #0#)) (QREFELT $ 33)) |LSAGG-;insert!;2AIA;8|) (LETT |z| (SPADCALL |y| (QREFELT $ 17)) |LSAGG-;insert!;2AIA;8|) (SPADCALL |y| |w| (QREFELT $ 26)) (SPADCALL |y| |z| (QREFELT $ 35)) (EXIT |x|))))))))) (DEFUN |LSAGG-;remove!;M2A;9| (|f| |x| $) (PROG (|p| |q|) (RETURN (SEQ (SEQ G190 (COND ((NULL (COND ((SPADCALL |x| (QREFELT $ 16)) 'NIL) ('T (SPADCALL (SPADCALL |x| (QREFELT $ 18)) |f|)))) (GO G191))) (SEQ (EXIT (LETT |x| (SPADCALL |x| (QREFELT $ 17)) |LSAGG-;remove!;M2A;9|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT (COND ((SPADCALL |x| (QREFELT $ 16)) |x|) ('T (SEQ (LETT |p| |x| |LSAGG-;remove!;M2A;9|) (LETT |q| (SPADCALL |x| (QREFELT $ 17)) |LSAGG-;remove!;M2A;9|) (SEQ G190 (COND ((NULL (SPADCALL (SPADCALL |q| (QREFELT $ 16)) (QREFELT $ 25))) (GO G191))) (SEQ (EXIT (COND ((SPADCALL (SPADCALL |q| (QREFELT $ 18)) |f|) (LETT |q| (SPADCALL |p| (SPADCALL |q| (QREFELT $ 17)) (QREFELT $ 26)) |LSAGG-;remove!;M2A;9|)) ('T (SEQ (LETT |p| |q| |LSAGG-;remove!;M2A;9|) (EXIT (LETT |q| (SPADCALL |q| (QREFELT $ 17)) |LSAGG-;remove!;M2A;9|))))))) NIL (GO G190) G191 (EXIT NIL)) (EXIT |x|))))))))) (DEFUN |LSAGG-;delete!;AIA;10| (|x| |i| $) (PROG (|m| #0=#:G1480 |y|) (RETURN (SEQ (LETT |m| (SPADCALL |x| (QREFELT $ 32)) |LSAGG-;delete!;AIA;10|) (EXIT (COND ((< |i| |m|) (|error| "index out of range")) ((EQL |i| |m|) (SPADCALL |x| (QREFELT $ 17))) ('T (SEQ (LETT |y| (SPADCALL |x| (PROG1 (LETT #0# (- (- |i| 1) |m|) |LSAGG-;delete!;AIA;10|) (|check-subtype| (>= #0# 0) '(|NonNegativeInteger|) #0#)) (QREFELT $ 33)) |LSAGG-;delete!;AIA;10|) (SPADCALL |y| (SPADCALL |y| 2 (QREFELT $ 33)) (QREFELT $ 26)) (EXIT |x|))))))))) (DEFUN |LSAGG-;delete!;AUsA;11| (|x| |i| $) (PROG (|l| |m| |h| #0=#:G1485 #1=#:G1486 |t| #2=#:G1487) (RETURN (SEQ (LETT |l| (SPADCALL |i| (QREFELT $ 40)) |LSAGG-;delete!;AUsA;11|) (LETT |m| (SPADCALL |x| (QREFELT $ 32)) |LSAGG-;delete!;AUsA;11|) (EXIT (COND ((< |l| |m|) (|error| "index out of range")) ('T (SEQ (LETT |h| (COND ((SPADCALL |i| (QREFELT $ 41)) (SPADCALL |i| (QREFELT $ 42))) ('T (SPADCALL |x| (QREFELT $ 43)))) |LSAGG-;delete!;AUsA;11|) (EXIT (COND ((< |h| |l|) |x|) ((EQL |l| |m|) (SPADCALL |x| (PROG1 (LETT #0# (- (+ |h| 1) |m|) |LSAGG-;delete!;AUsA;11|) (|check-subtype| (>= #0# 0) '(|NonNegativeInteger|) #0#)) (QREFELT $ 33))) ('T (SEQ (LETT |t| (SPADCALL |x| (PROG1 (LETT #1# (- (- |l| 1) |m|) |LSAGG-;delete!;AUsA;11|) (|check-subtype| (>= #1# 0) '(|NonNegativeInteger|) #1#)) (QREFELT $ 33)) |LSAGG-;delete!;AUsA;11|) (SPADCALL |t| (SPADCALL |t| (PROG1 (LETT #2# (+ (- |h| |l|) 2) |LSAGG-;delete!;AUsA;11|) (|check-subtype| (>= #2# 0) '(|NonNegativeInteger|) #2#)) (QREFELT $ 33)) (QREFELT $ 26)) (EXIT |x|))))))))))))) (DEFUN |LSAGG-;find;MAU;12| (|f| |x| $) (SEQ (SEQ G190 (COND ((NULL (COND ((SPADCALL |x| (QREFELT $ 16)) 'NIL) ('T (SPADCALL (SPADCALL (SPADCALL |x| (QREFELT $ 18)) |f|) (QREFELT $ 25))))) (GO G191))) (SEQ (EXIT (LETT |x| (SPADCALL |x| (QREFELT $ 17)) |LSAGG-;find;MAU;12|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT (COND ((SPADCALL |x| (QREFELT $ 16)) (CONS 1 "failed")) ('T (CONS 0 (SPADCALL |x| (QREFELT $ 18)))))))) (DEFUN |LSAGG-;position;MAI;13| (|f| |x| $) (PROG (|k|) (RETURN (SEQ (SEQ (LETT |k| (SPADCALL |x| (QREFELT $ 32)) |LSAGG-;position;MAI;13|) G190 (COND ((NULL (COND ((SPADCALL |x| (QREFELT $ 16)) 'NIL) ('T (SPADCALL (SPADCALL (SPADCALL |x| (QREFELT $ 18)) |f|) (QREFELT $ 25))))) (GO G191))) (SEQ (EXIT (LETT |x| (SPADCALL |x| (QREFELT $ 17)) |LSAGG-;position;MAI;13|))) (LETT |k| (+ |k| 1) |LSAGG-;position;MAI;13|) (GO G190) G191 (EXIT NIL)) (EXIT (COND ((SPADCALL |x| (QREFELT $ 16)) (- (SPADCALL |x| (QREFELT $ 32)) 1)) ('T |k|))))))) (DEFUN |LSAGG-;mergeSort| (|f| |p| |n| $) (PROG (#0=#:G1507 |l| |q|) (RETURN (SEQ (COND ((EQL |n| 2) (COND ((SPADCALL (SPADCALL (SPADCALL |p| (QREFELT $ 17)) (QREFELT $ 18)) (SPADCALL |p| (QREFELT $ 18)) |f|) (LETT |p| (SPADCALL |p| (QREFELT $ 48)) |LSAGG-;mergeSort|))))) (EXIT (COND ((< |n| 3) |p|) ('T (SEQ (LETT |l| (PROG1 (LETT #0# (QUOTIENT2 |n| 2) |LSAGG-;mergeSort|) (|check-subtype| (>= #0# 0) '(|NonNegativeInteger|) #0#)) |LSAGG-;mergeSort|) (LETT |q| (SPADCALL |p| |l| (QREFELT $ 49)) |LSAGG-;mergeSort|) (LETT |p| (|LSAGG-;mergeSort| |f| |p| |l| $) |LSAGG-;mergeSort|) (LETT |q| (|LSAGG-;mergeSort| |f| |q| (- |n| |l|) $) |LSAGG-;mergeSort|) (EXIT (SPADCALL |f| |p| |q| (QREFELT $ 23))))))))))) (DEFUN |LSAGG-;sorted?;MAB;15| (|f| |l| $) (PROG (#0=#:G1516 |p|) (RETURN (SEQ (EXIT (COND ((SPADCALL |l| (QREFELT $ 16)) 'T) ('T (SEQ (LETT |p| (SPADCALL |l| (QREFELT $ 17)) |LSAGG-;sorted?;MAB;15|) (SEQ G190 (COND ((NULL (SPADCALL (SPADCALL |p| (QREFELT $ 16)) (QREFELT $ 25))) (GO G191))) (SEQ (EXIT (COND ((NULL (SPADCALL (SPADCALL |l| (QREFELT $ 18)) (SPADCALL |p| (QREFELT $ 18)) |f|)) (PROGN (LETT #0# 'NIL |LSAGG-;sorted?;MAB;15|) (GO #0#))) ('T (LETT |p| (SPADCALL (LETT |l| |p| |LSAGG-;sorted?;MAB;15|) (QREFELT $ 17)) |LSAGG-;sorted?;MAB;15|))))) NIL (GO G190) G191 (EXIT NIL)) (EXIT 'T))))) #0# (EXIT #0#))))) (DEFUN |LSAGG-;reduce;MA2S;16| (|f| |x| |i| $) (PROG (|r|) (RETURN (SEQ (LETT |r| |i| |LSAGG-;reduce;MA2S;16|) (SEQ G190 (COND ((NULL (SPADCALL (SPADCALL |x| (QREFELT $ 16)) (QREFELT $ 25))) (GO G191))) (SEQ (LETT |r| (SPADCALL |r| (SPADCALL |x| (QREFELT $ 18)) |f|) |LSAGG-;reduce;MA2S;16|) (EXIT (LETT |x| (SPADCALL |x| (QREFELT $ 17)) |LSAGG-;reduce;MA2S;16|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT |r|))))) (DEFUN |LSAGG-;reduce;MA3S;17| (|f| |x| |i| |a| $) (PROG (|r|) (RETURN (SEQ (LETT |r| |i| |LSAGG-;reduce;MA3S;17|) (SEQ G190 (COND ((NULL (COND ((SPADCALL |x| (QREFELT $ 16)) 'NIL) ('T (SPADCALL (SPADCALL |r| |a| (QREFELT $ 52)) (QREFELT $ 25))))) (GO G191))) (SEQ (LETT |r| (SPADCALL |r| (SPADCALL |x| (QREFELT $ 18)) |f|) |LSAGG-;reduce;MA3S;17|) (EXIT (LETT |x| (SPADCALL |x| (QREFELT $ 17)) |LSAGG-;reduce;MA3S;17|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT |r|))))) (DEFUN |LSAGG-;new;NniSA;18| (|n| |s| $) (PROG (|k| |l|) (RETURN (SEQ (LETT |l| (SPADCALL (QREFELT $ 12)) |LSAGG-;new;NniSA;18|) (SEQ (LETT |k| 1 |LSAGG-;new;NniSA;18|) G190 (COND ((QSGREATERP |k| |n|) (GO G191))) (SEQ (EXIT (LETT |l| (SPADCALL |s| |l| (QREFELT $ 13)) |LSAGG-;new;NniSA;18|))) (LETT |k| (QSADD1 |k|) |LSAGG-;new;NniSA;18|) (GO G190) G191 (EXIT NIL)) (EXIT |l|))))) (DEFUN |LSAGG-;map;M3A;19| (|f| |x| |y| $) (PROG (|z|) (RETURN (SEQ (LETT |z| (SPADCALL (QREFELT $ 12)) |LSAGG-;map;M3A;19|) (SEQ G190 (COND ((NULL (COND ((SPADCALL |x| (QREFELT $ 16)) 'NIL) ('T (SPADCALL (SPADCALL |y| (QREFELT $ 16)) (QREFELT $ 25))))) (GO G191))) (SEQ (LETT |z| (SPADCALL (SPADCALL (SPADCALL |x| (QREFELT $ 18)) (SPADCALL |y| (QREFELT $ 18)) |f|) |z| (QREFELT $ 13)) |LSAGG-;map;M3A;19|) (LETT |x| (SPADCALL |x| (QREFELT $ 17)) |LSAGG-;map;M3A;19|) (EXIT (LETT |y| (SPADCALL |y| (QREFELT $ 17)) |LSAGG-;map;M3A;19|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT (SPADCALL |z| (QREFELT $ 48))))))) (DEFUN |LSAGG-;reverse!;2A;20| (|x| $) (PROG (|z| |y|) (RETURN (SEQ (COND ((OR (SPADCALL |x| (QREFELT $ 16)) (SPADCALL (LETT |y| (SPADCALL |x| (QREFELT $ 17)) |LSAGG-;reverse!;2A;20|) (QREFELT $ 16))) |x|) ('T (SEQ (SPADCALL |x| (SPADCALL (QREFELT $ 12)) (QREFELT $ 26)) (SEQ G190 (COND ((NULL (SPADCALL (SPADCALL |y| (QREFELT $ 16)) (QREFELT $ 25))) (GO G191))) (SEQ (LETT |z| (SPADCALL |y| (QREFELT $ 17)) |LSAGG-;reverse!;2A;20|) (SPADCALL |y| |x| (QREFELT $ 26)) (LETT |x| |y| |LSAGG-;reverse!;2A;20|) (EXIT (LETT |y| |z| |LSAGG-;reverse!;2A;20|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT |x|)))))))) (DEFUN |LSAGG-;copy;2A;21| (|x| $) (PROG (|k| |y|) (RETURN (SEQ (LETT |y| (SPADCALL (QREFELT $ 12)) |LSAGG-;copy;2A;21|) (SEQ (LETT |k| 0 |LSAGG-;copy;2A;21|) G190 (COND ((NULL (SPADCALL (SPADCALL |x| (QREFELT $ 16)) (QREFELT $ 25))) (GO G191))) (SEQ (COND ((EQL |k| 1000) (COND ((SPADCALL |x| (QREFELT $ 57)) (EXIT (|error| "cyclic list")))))) (LETT |y| (SPADCALL (SPADCALL |x| (QREFELT $ 18)) |y| (QREFELT $ 13)) |LSAGG-;copy;2A;21|) (EXIT (LETT |x| (SPADCALL |x| (QREFELT $ 17)) |LSAGG-;copy;2A;21|))) (LETT |k| (QSADD1 |k|) |LSAGG-;copy;2A;21|) (GO G190) G191 (EXIT NIL)) (EXIT (SPADCALL |y| (QREFELT $ 48))))))) (DEFUN |LSAGG-;copyInto!;2AIA;22| (|y| |x| |s| $) (PROG (|m| #0=#:G1545 |z|) (RETURN (SEQ (LETT |m| (SPADCALL |y| (QREFELT $ 32)) |LSAGG-;copyInto!;2AIA;22|) (EXIT (COND ((< |s| |m|) (|error| "index out of range")) ('T (SEQ (LETT |z| (SPADCALL |y| (PROG1 (LETT #0# (- |s| |m|) |LSAGG-;copyInto!;2AIA;22|) (|check-subtype| (>= #0# 0) '(|NonNegativeInteger|) #0#)) (QREFELT $ 33)) |LSAGG-;copyInto!;2AIA;22|) (SEQ G190 (COND ((NULL (COND ((SPADCALL |z| (QREFELT $ 16)) 'NIL) ('T (SPADCALL (SPADCALL |x| (QREFELT $ 16)) (QREFELT $ 25))))) (GO G191))) (SEQ (SPADCALL |z| (SPADCALL |x| (QREFELT $ 18)) (QREFELT $ 59)) (LETT |x| (SPADCALL |x| (QREFELT $ 17)) |LSAGG-;copyInto!;2AIA;22|) (EXIT (LETT |z| (SPADCALL |z| (QREFELT $ 17)) |LSAGG-;copyInto!;2AIA;22|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT |y|))))))))) (DEFUN |LSAGG-;position;SA2I;23| (|w| |x| |s| $) (PROG (|m| #0=#:G1552 |k|) (RETURN (SEQ (LETT |m| (SPADCALL |x| (QREFELT $ 32)) |LSAGG-;position;SA2I;23|) (EXIT (COND ((< |s| |m|) (|error| "index out of range")) ('T (SEQ (LETT |x| (SPADCALL |x| (PROG1 (LETT #0# (- |s| |m|) |LSAGG-;position;SA2I;23|) (|check-subtype| (>= #0# 0) '(|NonNegativeInteger|) #0#)) (QREFELT $ 33)) |LSAGG-;position;SA2I;23|) (SEQ (LETT |k| |s| |LSAGG-;position;SA2I;23|) G190 (COND ((NULL (COND ((SPADCALL |x| (QREFELT $ 16)) 'NIL) ('T (SPADCALL (SPADCALL |w| (SPADCALL |x| (QREFELT $ 18)) (QREFELT $ 52)) (QREFELT $ 25))))) (GO G191))) (SEQ (EXIT (LETT |x| (SPADCALL |x| (QREFELT $ 17)) |LSAGG-;position;SA2I;23|))) (LETT |k| (+ |k| 1) |LSAGG-;position;SA2I;23|) (GO G190) G191 (EXIT NIL)) (EXIT (COND ((SPADCALL |x| (QREFELT $ 16)) (- (SPADCALL |x| (QREFELT $ 32)) 1)) ('T |k|))))))))))) (DEFUN |LSAGG-;removeDuplicates!;2A;24| (|l| $) (PROG (|p|) (RETURN (SEQ (LETT |p| |l| |LSAGG-;removeDuplicates!;2A;24|) (SEQ G190 (COND ((NULL (SPADCALL (SPADCALL |p| (QREFELT $ 16)) (QREFELT $ 25))) (GO G191))) (SEQ (EXIT (LETT |p| (SPADCALL |p| (SPADCALL (CONS #'|LSAGG-;removeDuplicates!;2A;24!0| (VECTOR $ |p|)) (SPADCALL |p| (QREFELT $ 17)) (QREFELT $ 62)) (QREFELT $ 26)) |LSAGG-;removeDuplicates!;2A;24|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT |l|))))) (DEFUN |LSAGG-;removeDuplicates!;2A;24!0| (|#1| $$) (PROG ($) (LETT $ (QREFELT $$ 0) |LSAGG-;removeDuplicates!;2A;24|) (RETURN (PROGN (SPADCALL |#1| (SPADCALL (QREFELT $$ 1) (QREFELT $ 18)) (QREFELT $ 52)))))) (DEFUN |LSAGG-;<;2AB;25| (|x| |y| $) (PROG (#0=#:G1566) (RETURN (SEQ (EXIT (SEQ (SEQ G190 (COND ((NULL (COND ((SPADCALL |x| (QREFELT $ 16)) 'NIL) ('T (SPADCALL (SPADCALL |y| (QREFELT $ 16)) (QREFELT $ 25))))) (GO G191))) (SEQ (EXIT (COND ((NULL (SPADCALL (SPADCALL |x| (QREFELT $ 18)) (SPADCALL |y| (QREFELT $ 18)) (QREFELT $ 52))) (PROGN (LETT #0# (SPADCALL (SPADCALL |x| (QREFELT $ 18)) (SPADCALL |y| (QREFELT $ 18)) (QREFELT $ 64)) |LSAGG-;<;2AB;25|) (GO #0#))) ('T (SEQ (LETT |x| (SPADCALL |x| (QREFELT $ 17)) |LSAGG-;<;2AB;25|) (EXIT (LETT |y| (SPADCALL |y| (QREFELT $ 17)) |LSAGG-;<;2AB;25|))))))) NIL (GO G190) G191 (EXIT NIL)) (EXIT (COND ((SPADCALL |x| (QREFELT $ 16)) (SPADCALL (SPADCALL |y| (QREFELT $ 16)) (QREFELT $ 25))) ('T 'NIL))))) #0# (EXIT #0#))))) (DEFUN |ListAggregate&| (|#1| |#2|) (PROG (|dv$1| |dv$2| |dv$| $ |pv$|) (RETURN (PROGN (LETT |dv$1| (|devaluate| |#1|) . #0=(|ListAggregate&|)) (LETT |dv$2| (|devaluate| |#2|) . #0#) (LETT |dv$| (LIST '|ListAggregate&| |dv$1| |dv$2|) . #0#) (LETT $ (GETREFV 67) . #0#) (QSETREFV $ 0 |dv$|) (QSETREFV $ 3 (LETT |pv$| (|buildPredVector| 0 0 NIL) . #0#)) (|stuffDomainSlots| $) (QSETREFV $ 6 |#1|) (QSETREFV $ 7 |#2|) (COND ((|HasCategory| |#2| '(|SetCategory|)) (QSETREFV $ 53 (CONS (|dispatchFunction| |LSAGG-;reduce;MA3S;17|) $)))) (COND ((|HasCategory| |#2| '(|SetCategory|)) (PROGN (QSETREFV $ 61 (CONS (|dispatchFunction| |LSAGG-;position;SA2I;23|) $)) (QSETREFV $ 63 (CONS (|dispatchFunction| |LSAGG-;removeDuplicates!;2A;24|) $))))) (COND ((|HasCategory| |#2| '(|OrderedSet|)) (QSETREFV $ 65 (CONS (|dispatchFunction| |LSAGG-;<;2AB;25|) $)))) $)))) (MAKEPROP '|ListAggregate&| '|infovec| (LIST '#(NIL NIL NIL NIL NIL NIL (|local| |#1|) (|local| |#2|) (|NonNegativeInteger|) (0 . |#|) (|Mapping| 15 7 7) |LSAGG-;sort!;M2A;1| (5 . |empty|) (9 . |concat|) |LSAGG-;list;SA;2| (|Boolean|) (15 . |empty?|) (20 . |rest|) (25 . |first|) (|Mapping| 7 7 7) (30 . |reduce|) |LSAGG-;reduce;MAS;3| (37 . |copy|) (42 . |merge!|) |LSAGG-;merge;M3A;4| (49 . |not|) (54 . |setrest!|) (|Mapping| 15 7) |LSAGG-;select!;M2A;5| (60 . |eq?|) |LSAGG-;merge!;M3A;6| (|Integer|) (66 . |minIndex|) (71 . |rest|) |LSAGG-;insert!;SAIA;7| (77 . |concat!|) |LSAGG-;insert!;2AIA;8| |LSAGG-;remove!;M2A;9| |LSAGG-;delete!;AIA;10| (|UniversalSegment| 31) (83 . |lo|) (88 . |hasHi|) (93 . |hi|) (98 . |maxIndex|) |LSAGG-;delete!;AUsA;11| (|Union| 7 '"failed") |LSAGG-;find;MAU;12| |LSAGG-;position;MAI;13| (103 . |reverse!|) (108 . |split!|) |LSAGG-;sorted?;MAB;15| |LSAGG-;reduce;MA2S;16| (114 . =) (120 . |reduce|) |LSAGG-;new;NniSA;18| |LSAGG-;map;M3A;19| |LSAGG-;reverse!;2A;20| (128 . |cyclic?|) |LSAGG-;copy;2A;21| (133 . |setfirst!|) |LSAGG-;copyInto!;2AIA;22| (139 . |position|) (146 . |remove!|) (152 . |removeDuplicates!|) (157 . <) (163 . <) (|Mapping| 7 7)) '#(|sorted?| 169 |sort!| 175 |select!| 181 |reverse!| 187 |removeDuplicates!| 192 |remove!| 197 |reduce| 203 |position| 224 |new| 237 |merge!| 243 |merge| 250 |map| 257 |list| 264 |insert!| 269 |find| 283 |delete!| 289 |copyInto!| 301 |copy| 308 < 313) 'NIL (CONS (|makeByteWordVec2| 1 'NIL) (CONS '#() (CONS '#() (|makeByteWordVec2| 65 '(1 6 8 0 9 0 6 0 12 2 6 0 7 0 13 1 6 15 0 16 1 6 0 0 17 1 6 7 0 18 3 6 7 19 0 7 20 1 6 0 0 22 3 6 0 10 0 0 23 1 15 0 0 25 2 6 0 0 0 26 2 6 15 0 0 29 1 6 31 0 32 2 6 0 0 8 33 2 6 0 0 0 35 1 39 31 0 40 1 39 15 0 41 1 39 31 0 42 1 6 31 0 43 1 6 0 0 48 2 6 0 0 31 49 2 7 15 0 0 52 4 0 7 19 0 7 7 53 1 6 15 0 57 2 6 7 0 7 59 3 0 31 7 0 31 61 2 6 0 27 0 62 1 0 0 0 63 2 7 15 0 0 64 2 0 15 0 0 65 2 0 15 10 0 50 2 0 0 10 0 11 2 0 0 27 0 28 1 0 0 0 56 1 0 0 0 63 2 0 0 27 0 37 3 0 7 19 0 7 51 4 0 7 19 0 7 7 53 2 0 7 19 0 21 2 0 31 27 0 47 3 0 31 7 0 31 61 2 0 0 8 7 54 3 0 0 10 0 0 30 3 0 0 10 0 0 24 3 0 0 19 0 0 55 1 0 0 7 14 3 0 0 7 0 31 34 3 0 0 0 0 31 36 2 0 45 27 0 46 2 0 0 0 39 44 2 0 0 0 31 38 3 0 0 0 0 31 60 1 0 0 0 58 2 0 15 0 0 65))))) '|lookupComplete|)) @ \section{category ALAGG AssociationListAggregate} <<category ALAGG AssociationListAggregate>>= )abbrev category ALAGG AssociationListAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ An association list is a list of key entry pairs which may be viewed ++ as a table. It is a poor mans version of a table: ++ searching for a key is a linear operation. AssociationListAggregate(Key:SetCategory,Entry:SetCategory): Category == Join(TableAggregate(Key, Entry), ListAggregate Record(key:Key,entry:Entry)) with assoc: (Key, %) -> Union(Record(key:Key,entry:Entry), "failed") ++ assoc(k,u) returns the element x in association list u stored ++ with key k, or "failed" if u has no key k. @ \section{ALAGG.lsp BOOTSTRAP} {\bf ALAGG} depends on a chain of files. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf ALAGG} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf ALAGG.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <<ALAGG.lsp BOOTSTRAP>>= (/VERSIONCHECK 2) (DEFPARAMETER |AssociationListAggregate;CAT| 'NIL) (DEFPARAMETER |AssociationListAggregate;AL| 'NIL) (DEFUN |AssociationListAggregate| (&REST #0=#:G1402 &AUX #1=#:G1400) (DSETQ #1# #0#) (LET (#2=#:G1401) (COND ((SETQ #2# (|assoc| (|devaluateList| #1#) |AssociationListAggregate;AL|)) (CDR #2#)) (T (SETQ |AssociationListAggregate;AL| (|cons5| (CONS (|devaluateList| #1#) (SETQ #2# (APPLY #'|AssociationListAggregate;| #1#))) |AssociationListAggregate;AL|)) #2#)))) (DEFUN |AssociationListAggregate;| (|t#1| |t#2|) (PROG (#0=#:G1399) (RETURN (PROG1 (LETT #0# (|sublisV| (PAIR '(|t#1| |t#2|) (LIST (|devaluate| |t#1|) (|devaluate| |t#2|))) (|sublisV| (PAIR '(#1=#:G1398) (LIST '(|Record| (|:| |key| |t#1|) (|:| |entry| |t#2|)))) (COND (|AssociationListAggregate;CAT|) ('T (LETT |AssociationListAggregate;CAT| (|Join| (|TableAggregate| '|t#1| '|t#2|) (|ListAggregate| '#1#) (|mkCategory| '|domain| '(((|assoc| ((|Union| (|Record| (|:| |key| |t#1|) (|:| |entry| |t#2|)) "failed") |t#1| $)) T)) NIL 'NIL NIL)) . #2=(|AssociationListAggregate|)))))) . #2#) (SETELT #0# 0 (LIST '|AssociationListAggregate| (|devaluate| |t#1|) (|devaluate| |t#2|))))))) @ \section{category SRAGG StringAggregate} <<category SRAGG StringAggregate>>= )abbrev category SRAGG StringAggregate ++ Author: Stephen Watt and Michael Monagan. revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A string aggregate is a category for strings, that is, ++ one dimensional arrays of characters. StringAggregate: Category == OneDimensionalArrayAggregate Character with lowerCase : % -> % ++ lowerCase(s) returns the string with all characters in lower case. lowerCase_!: % -> % ++ lowerCase!(s) destructively replaces the alphabetic characters ++ in s by lower case. upperCase : % -> % ++ upperCase(s) returns the string with all characters in upper case. upperCase_!: % -> % ++ upperCase!(s) destructively replaces the alphabetic characters ++ in s by upper case characters. prefix? : (%, %) -> Boolean ++ prefix?(s,t) tests if the string s is the initial substring of t. ++ Note: \axiom{prefix?(s,t) == reduce(and,[s.i = t.i for i in 0..maxIndex s])}. suffix? : (%, %) -> Boolean ++ suffix?(s,t) tests if the string s is the final substring of t. ++ Note: \axiom{suffix?(s,t) == reduce(and,[s.i = t.(n - m + i) for i in 0..maxIndex s])} ++ where m and n denote the maxIndex of s and t respectively. substring?: (%, %, Integer) -> Boolean ++ substring?(s,t,i) tests if s is a substring of t beginning at ++ index i. ++ Note: \axiom{substring?(s,t,0) = prefix?(s,t)}. match: (%, %, Character) -> NonNegativeInteger ++ match(p,s,wc) tests if pattern \axiom{p} matches subject \axiom{s} ++ where \axiom{wc} is a wild card character. If no match occurs, ++ the index \axiom{0} is returned; otheriwse, the value returned ++ is the first index of the first character in the subject matching ++ the subject (excluding that matched by an initial wild-card). ++ For example, \axiom{match("*to*","yorktown","*")} returns \axiom{5} ++ indicating a successful match starting at index \axiom{5} of ++ \axiom{"yorktown"}. match?: (%, %, Character) -> Boolean ++ match?(s,t,c) tests if s matches t except perhaps for ++ multiple and consecutive occurrences of character c. ++ Typically c is the blank character. replace : (%, UniversalSegment(Integer), %) -> % ++ replace(s,i..j,t) replaces the substring \axiom{s(i..j)} of s by string t. position : (%, %, Integer) -> Integer ++ position(s,t,i) returns the position j of the substring s in string t, ++ where \axiom{j >= i} is required. position : (CharacterClass, %, Integer) -> Integer ++ position(cc,t,i) returns the position \axiom{j >= i} in t of ++ the first character belonging to cc. coerce : Character -> % ++ coerce(c) returns c as a string s with the character c. split: (%, Character) -> List % ++ split(s,c) returns a list of substrings delimited by character c. split: (%, CharacterClass) -> List % ++ split(s,cc) returns a list of substrings delimited by characters in cc. trim: (%, Character) -> % ++ trim(s,c) returns s with all characters c deleted from right ++ and left ends. ++ For example, \axiom{trim(" abc ", char " ")} returns \axiom{"abc"}. trim: (%, CharacterClass) -> % ++ trim(s,cc) returns s with all characters in cc deleted from right ++ and left ends. ++ For example, \axiom{trim("(abc)", charClass "()")} returns \axiom{"abc"}. leftTrim: (%, Character) -> % ++ leftTrim(s,c) returns s with all leading characters c deleted. ++ For example, \axiom{leftTrim(" abc ", char " ")} returns \axiom{"abc "}. leftTrim: (%, CharacterClass) -> % ++ leftTrim(s,cc) returns s with all leading characters in cc deleted. ++ For example, \axiom{leftTrim("(abc)", charClass "()")} returns \axiom{"abc)"}. rightTrim: (%, Character) -> % ++ rightTrim(s,c) returns s with all trailing occurrences of c deleted. ++ For example, \axiom{rightTrim(" abc ", char " ")} returns \axiom{" abc"}. rightTrim: (%, CharacterClass) -> % ++ rightTrim(s,cc) returns s with all trailing occurences of ++ characters in cc deleted. ++ For example, \axiom{rightTrim("(abc)", charClass "()")} returns \axiom{"(abc"}. elt: (%, %) -> % ++ elt(s,t) returns the concatenation of s and t. It is provided to ++ allow juxtaposition of strings to work as concatenation. ++ For example, \axiom{"smoo" "shed"} returns \axiom{"smooshed"}. add trim(s: %, c: Character) == leftTrim(rightTrim(s, c), c) trim(s: %, cc: CharacterClass) == leftTrim(rightTrim(s, cc), cc) lowerCase s == lowerCase_! copy s upperCase s == upperCase_! copy s prefix?(s, t) == substring?(s, t, minIndex t) coerce(c:Character):% == new(1, c) elt(s:%, t:%): % == concat(s,t)$% @ \section{category BTAGG BitAggregate} <<category BTAGG BitAggregate>>= )abbrev category BTAGG BitAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ The bit aggregate category models aggregates representing large ++ quantities of Boolean data. BitAggregate(): Category == Join(OrderedSet, Logic, OneDimensionalArrayAggregate Boolean) with "not": % -> % ++ not(b) returns the logical {\em not} of bit aggregate ++ \axiom{b}. "^" : % -> % ++ ^ b returns the logical {\em not} of bit aggregate ++ \axiom{b}. nand : (%, %) -> % ++ nand(a,b) returns the logical {\em nand} of bit aggregates \axiom{a} ++ and \axiom{b}. nor : (%, %) -> % ++ nor(a,b) returns the logical {\em nor} of bit aggregates \axiom{a} and ++ \axiom{b}. _and : (%, %) -> % ++ a and b returns the logical {\em and} of bit aggregates \axiom{a} and ++ \axiom{b}. _or : (%, %) -> % ++ a or b returns the logical {\em or} of bit aggregates \axiom{a} and ++ \axiom{b}. xor : (%, %) -> % ++ xor(a,b) returns the logical {\em exclusive-or} of bit aggregates ++ \axiom{a} and \axiom{b}. add not v == map(_not, v) _^ v == map(_not, v) _~(v) == map(_~, v) _/_\(v, u) == map(_/_\, v, u) _\_/(v, u) == map(_\_/, v, u) nand(v, u) == map(nand, v, u) nor(v, u) == map(nor, v, u) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<category AGG Aggregate>> <<category HOAGG HomogeneousAggregate>> <<category CLAGG Collection>> <<category BGAGG BagAggregate>> <<category SKAGG StackAggregate>> <<category QUAGG QueueAggregate>> <<category DQAGG DequeueAggregate>> <<category PRQAGG PriorityQueueAggregate>> <<category DIOPS DictionaryOperations>> <<category DIAGG Dictionary>> <<category MDAGG MultiDictionary>> <<category SETAGG SetAggregate>> <<category FSAGG FiniteSetAggregate>> <<category MSETAGG MultisetAggregate>> <<category OMSAGG OrderedMultisetAggregate>> <<category KDAGG KeyedDictionary>> <<category ELTAB Eltable>> <<category ELTAGG EltableAggregate>> <<category IXAGG IndexedAggregate>> <<category TBAGG TableAggregate>> <<category RCAGG RecursiveAggregate>> <<category BRAGG BinaryRecursiveAggregate>> <<category DLAGG DoublyLinkedAggregate>> <<category URAGG UnaryRecursiveAggregate>> <<category STAGG StreamAggregate>> <<category LNAGG LinearAggregate>> <<category FLAGG FiniteLinearAggregate>> <<category A1AGG OneDimensionalArrayAggregate>> <<category ELAGG ExtensibleLinearAggregate>> <<category LSAGG ListAggregate>> <<category ALAGG AssociationListAggregate>> <<category SRAGG StringAggregate>> <<category BTAGG BitAggregate>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}