\documentclass{article} \usepackage{open-axiom} \begin{document} \title{src/algebra acplot.spad} \author{Clifton J. Williamson} \maketitle \begin{abstract} \end{abstract} \tableofcontents \eject \section{package REALSOLV RealSolvePackage} <<package REALSOLV RealSolvePackage>>= import PolynomialCategoryLifting import Integer import Float import Symbol import Fraction import Polynomial import FloatingRealPackage )abbrev package REALSOLV RealSolvePackage RealSolvePackage(): Exports == Implementation where ++ This package provides numerical solutions of systems of polynomial ++ equations for use in ACPLOT. I ==> Integer IE ==> IndexedExponents Symbol L ==> List NF ==> Float P ==> Polynomial RN ==> Fraction Integer SE ==> Symbol RFI ==> Fraction Polynomial Integer LIFT ==> PolynomialCategoryLifting(IE,SE,RN,P RN,RFI) SOLV ==> FloatingRealPackage Float Exports ==> with solve: (P RN,NF) -> L NF ++ solve(p,eps) finds the real zeroes of a ++ univariate rational polynomial p with precision eps. solve: (P I,NF) -> L NF ++ solve(p,eps) finds the real zeroes of a univariate ++ integer polynomial p with precision eps. realSolve: (L P I,L SE,NF) -> L L NF ++ realSolve(lp,lv,eps) = compute the list of the real ++ solutions of the list lp of polynomials with integer ++ coefficients with respect to the variables in lv, ++ with precision eps. Implementation ==> add prn2rfi: P RN -> RFI prn2rfi p == map(#1 :: RFI,(numer(#1) :: RFI)/(denom(#1) :: RFI),p)$LIFT pi2rfi: P I -> RFI pi2rfi p == p :: RFI solve(p:P RN,eps:NF) == realRoots(prn2rfi p,eps)$SOLV solve(p:P I,eps:NF) == realRoots(p :: RFI,eps)$SOLV realSolve(lp,lv,eps) == realRoots(map(pi2rfi,lp)$ListFunctions2(P I,RFI),lv,eps)$SOLV @ \section{domain ACPLOT PlaneAlgebraicCurvePlot} <<domain ACPLOT PlaneAlgebraicCurvePlot>>= import PlottablePlaneCurveCategory import Boolean import Integer import PositiveInteger import DoubleFloat import Float import Symbol import Polynomial import UnivariatePolynomial import SparseUnivariatePolynomial import Point import List ++ Plot a NON-SINGULAR plane algebraic curve p(x,y) = 0. ++ Author: Clifton J. Williamson ++ Date Created: Fall 1988 ++ Date Last Updated: 27 April 1990 ++ Keywords: algebraic curve, non-singular, plot ++ Examples: ++ References: )abbrev domain ACPLOT PlaneAlgebraicCurvePlot PlaneAlgebraicCurvePlot():Exports == Implementation where B ==> Boolean OUT ==> OutputForm SE ==> Symbol L ==> List SEG ==> Segment I ==> Integer PI ==> PositiveInteger RN ==> Fraction Integer NF ==> Float SF ==> DoubleFloat P ==> Polynomial UP ==> UnivariatePolynomial SUP ==> SparseUnivariatePolynomial FR ==> Factored Pt ==> Point DoubleFloat BoundaryPts ==> Record(left: L Pt,_ right: L Pt,_ bottom: L Pt,_ top: L Pt) NewPtInfo ==> Record(newPt: Pt,_ type: String) Corners ==> Record(minXVal: SF,_ maxXVal: SF,_ minYVal: SF,_ maxYVal: SF) kinte ==> solve$RealSolvePackage() rsolve ==> realSolve$RealSolvePackage() Exports ==> PlottablePlaneCurveCategory with makeSketch:(P I,SE,SE,SEG RN,SEG RN) -> % ++ makeSketch(p,x,y,a..b,c..d) creates an ACPLOT of the ++ curve \spad{p = 0} in the region {\em a <= x <= b, c <= y <= d}. ++ More specifically, 'makeSketch' plots a non-singular algebraic curve ++ \spad{p = 0} in an rectangular region {\em xMin <= x <= xMax}, ++ {\em yMin <= y <= yMax}. The user inputs ++ \spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. ++ Here p is a polynomial in the variables x and y with ++ integer coefficients (p belongs to the domain ++ \spad{Polynomial Integer}). The case ++ where p is a polynomial in only one of the variables is ++ allowed. The variables x and y are input to specify the ++ the coordinate axes. The horizontal axis is the x-axis and ++ the vertical axis is the y-axis. The rational numbers ++ xMin,...,yMax specify the boundaries of the region in ++ which the curve is to be plotted. refine:(%,SF) -> % ++ refine(p,x) \undocumented{} Implementation ==> add import PointPackage DoubleFloat import Plot import RealSolvePackage singValBetween?:(SF,SF,L SF) -> B segmentInfo:(SF -> SF,SF,SF,L SF,L SF,L SF,SF,SF) -> _ Record(seg:SEG SF,left: SF,lowerVals: L SF,upperVals:L SF) swapCoords:Pt -> Pt samePlottedPt?:(Pt,Pt) -> B findPtOnList:(Pt,L Pt) -> Union(Pt,"failed") makeCorners:(SF,SF,SF,SF) -> Corners getXMin: Corners -> SF getXMax: Corners -> SF getYMin: Corners -> SF getYMax: Corners -> SF SFPolyToUPoly:P SF -> SUP SF RNPolyToUPoly:P RN -> SUP RN coerceCoefsToSFs:P I -> P SF coerceCoefsToRNs:P I -> P RN RNtoSF:RN -> SF RNtoNF:RN -> NF SFtoNF:SF -> NF listPtsOnHorizBdry:(P RN,SE,RN,NF,NF) -> L Pt listPtsOnVertBdry:(P RN,SE,RN,NF,NF) -> L Pt listPtsInRect:(L L NF,NF,NF,NF,NF) -> L Pt ptsSuchThat?:(L L NF,L NF -> B) -> B inRect?:(L NF,NF,NF,NF,NF) -> B onHorzSeg?:(L NF,NF,NF,NF) -> B onVertSeg?:(L NF,NF,NF,NF) -> B newX:(L L NF,L L NF,NF,NF,NF,RN,RN) -> RN newY:(L L NF,L L NF,NF,NF,NF,RN,RN) -> RN makeOneVarSketch:(P I,SE,SE,RN,RN,RN,RN,SE) -> % makeLineSketch:(P I,SE,SE,RN,RN,RN,RN) -> % makeRatFcnSketch:(P I,SE,SE,RN,RN,RN,RN,SE) -> % makeGeneralSketch:(P I,SE,SE,RN,RN,RN,RN) -> % traceBranches:(P SF,P SF,P SF,SE,SE,Corners,SF,SF,PI,_ L Pt,BoundaryPts) -> L L Pt dummyFirstPt:(Pt,P SF,P SF,SE,SE,L Pt,L Pt,L Pt,L Pt) -> Pt listPtsOnSegment:(P SF,P SF,P SF,SE,SE,Pt,Pt,Corners,_ SF,SF,PI,L Pt,L Pt) -> L L Pt listPtsOnLoop:(P SF,P SF,P SF,SE,SE,Pt,Corners,_ SF,SF,PI,L Pt,L Pt) -> L L Pt computeNextPt:(P SF,P SF,P SF,SE,SE,Pt,Pt,Corners,_ SF,SF,PI,L Pt,L Pt) -> NewPtInfo newtonApprox:(SUP SF, SF, SF, PI) -> Union(SF, "failed") --% representation Rep := Record(poly : P I,_ xVar : SE,_ yVar : SE,_ minXVal : RN,_ maxXVal : RN,_ minYVal : RN,_ maxYVal : RN,_ bdryPts : BoundaryPts,_ hTanPts : L Pt,_ vTanPts : L Pt,_ branches: L L Pt) --% global constants EPSILON : NF := 0.000001 -- precision to which realSolve finds roots PLOTERR : SF := float(1,-3,10) -- maximum allowable difference in each coordinate when -- determining if 2 plotted points are equal --% global flags NADA : String := "nothing in particular" BDRY : String := "boundary point" CRIT : String := "critical point" BOTTOM : String := "bottom" TOP : String := "top" --% hacks NFtoSF: NF -> SF NFtoSF x == 0 + convert(x)$NF --% points makePt: (SF,SF) -> Pt makePt(xx,yy) == point(l : L SF := [xx,yy]) swapCoords(pt) == makePt(yCoord pt,xCoord pt) samePlottedPt?(p0,p1) == -- determines if p1 lies in a square with side 2 PLOTERR -- centered at p0 x0 := xCoord p0; y0 := yCoord p0 x1 := xCoord p1; y1 := yCoord p1 (abs(x1-x0) < PLOTERR) and (abs(y1-y0) < PLOTERR) findPtOnList(pt,pointList) == for point in pointList repeat samePlottedPt?(pt,point) => return point "failed" --% corners makeCorners(xMinSF,xMaxSF,yMinSF,yMaxSF) == [xMinSF,xMaxSF,yMinSF,yMaxSF] getXMin(corners) == corners.minXVal getXMax(corners) == corners.maxXVal getYMin(corners) == corners.minYVal getYMax(corners) == corners.maxYVal --% coercions SFPolyToUPoly(p) == -- 'p' is of type Polynomial, but has only one variable zero? p => 0 monomial(leadingCoefficient p,totalDegree p) + SFPolyToUPoly(reductum p) RNPolyToUPoly(p) == -- 'p' is of type Polynomial, but has only one variable zero? p => 0 monomial(leadingCoefficient p,totalDegree p) + RNPolyToUPoly(reductum p) coerceCoefsToSFs(p) == -- coefficients of 'p' are coerced to be DoubleFloat's map(coerce,p)$PolynomialFunctions2(I,SF) coerceCoefsToRNs(p) == -- coefficients of 'p' are coerced to be DoubleFloat's map(coerce,p)$PolynomialFunctions2(I,RN) RNtoSF(r) == coerce(r)@SF RNtoNF(r) == coerce(r)@NF SFtoNF(x) == convert(x)@NF --% computation of special points listPtsOnHorizBdry(pRN,y,y0,xMinNF,xMaxNF) == -- strict inequality here: corners on vertical boundary pointList : L Pt := nil() ySF := RNtoSF(y0) f := eval(pRN,y,y0) roots : L NF := kinte(f,EPSILON) for root in roots repeat if (xMinNF < root) and (root < xMaxNF) then pointList := cons(makePt(NFtoSF root, ySF), pointList) pointList listPtsOnVertBdry(pRN,x,x0,yMinNF,yMaxNF) == pointList : L Pt := nil() xSF := RNtoSF(x0) f := eval(pRN,x,x0) roots : L NF := kinte(f,EPSILON) for root in roots repeat if (yMinNF <= root) and (root <= yMaxNF) then pointList := cons(makePt(xSF, NFtoSF root), pointList) pointList listPtsInRect(points,xMin,xMax,yMin,yMax) == pointList : L Pt := nil() for point in points repeat xx := first point; yy := second point if (xMin<=xx) and (xx<=xMax) and (yMin<=yy) and (yy<=yMax) then pointList := cons(makePt(NFtoSF xx,NFtoSF yy),pointList) pointList ptsSuchThat?(points,pred) == for point in points repeat if pred point then return true false inRect?(point,xMinNF,xMaxNF,yMinNF,yMaxNF) == xx := first point; yy := second point xMinNF <= xx and xx <= xMaxNF and yMinNF <= yy and yy <= yMaxNF onHorzSeg?(point,xMinNF,xMaxNF,yNF) == xx := first point; yy := second point yy = yNF and xMinNF <= xx and xx <= xMaxNF onVertSeg?(point,yMinNF,yMaxNF,xNF) == xx := first point; yy := second point xx = xNF and yMinNF <= yy and yy <= yMaxNF newX(vtanPts,singPts,yMinNF,yMaxNF,xNF,xRN,horizInc) == xNewNF := xNF + RNtoNF horizInc xRtNF := max(xNF,xNewNF); xLftNF := min(xNF,xNewNF) -- ptsSuchThat?(singPts,inRect?(#1,xLftNF,xRtNF,yMinNF,yMaxNF)) => foo : L NF -> B := inRect?(#1,xLftNF,xRtNF,yMinNF,yMaxNF) ptsSuchThat?(singPts,foo) => newX(vtanPts,singPts,yMinNF,yMaxNF,xNF,xRN,horizInc/2::RN) -- ptsSuchThat?(vtanPts,onVertSeg?(#1,yMinNF,yMaxNF,xNewNF)) => goo : L NF -> B := onVertSeg?(#1,yMinNF,yMaxNF,xNewNF) ptsSuchThat?(vtanPts,goo) => newX(vtanPts,singPts,yMinNF,yMaxNF,xNF,xRN,horizInc/2::RN) xRN + horizInc newY(htanPts,singPts,xMinNF,xMaxNF,yNF,yRN,vertInc) == yNewNF := yNF + RNtoNF vertInc yTopNF := max(yNF,yNewNF); yBotNF := min(yNF,yNewNF) -- ptsSuchThat?(singPts,inRect?(#1,xMinNF,xMaxNF,yBotNF,yTopNF)) => foo : L NF -> B := inRect?(#1,xMinNF,xMaxNF,yBotNF,yTopNF) ptsSuchThat?(singPts,foo) => newY(htanPts,singPts,xMinNF,xMaxNF,yNF,yRN,vertInc/2::RN) -- ptsSuchThat?(htanPts,onHorzSeg?(#1,xMinNF,xMaxNF,yNewNF)) => goo : L NF -> B := onHorzSeg?(#1,xMinNF,xMaxNF,yNewNF) ptsSuchThat?(htanPts,goo) => newY(htanPts,singPts,xMinNF,xMaxNF,yNF,yRN,vertInc/2::RN) yRN + vertInc --% creation of sketches makeSketch(p,x,y,xRange,yRange) == xMin := lo xRange; xMax := hi xRange yMin := lo yRange; yMax := hi yRange -- test input for consistency xMax <= xMin => error "makeSketch: bad range for first variable" yMax <= yMin => error "makeSketch: bad range for second variable" varList := variables p # varList > 2 => error "makeSketch: polynomial in more than 2 variables" # varList = 0 => error "makeSketch: constant polynomial" -- polynomial in 1 variable # varList = 1 => (not member?(x,varList)) and (not member?(y,varList)) => error "makeSketch: bad variables" makeOneVarSketch(p,x,y,xMin,xMax,yMin,yMax,first varList) -- polynomial in 2 variables (not member?(x,varList)) or (not member?(y,varList)) => error "makeSketch: bad variables" totalDegree p = 1 => makeLineSketch(p,x,y,xMin,xMax,yMin,yMax) -- polynomial is linear in one variable -- y is a rational function of x degree(p,y) = 1 => makeRatFcnSketch(p,x,y,xMin,xMax,yMin,yMax,y) -- x is a rational function of y degree(p,x) = 1 => makeRatFcnSketch(p,x,y,xMin,xMax,yMin,yMax,x) -- the general case makeGeneralSketch(p,x,y,xMin,xMax,yMin,yMax) --% special cases makeOneVarSketch(p,x,y,xMin,xMax,yMin,yMax,var) == -- the case where 'p' is a polynomial in only one variable -- the graph consists of horizontal or vertical lines if var = x then minVal := RNtoNF xMin maxVal := RNtoNF xMax else minVal := RNtoNF yMin maxVal := RNtoNF yMax lf : L Pt := nil(); rt : L Pt := nil() bt : L Pt := nil(); tp : L Pt := nil() htans : L Pt := nil(); vtans : L Pt := nil() bran : L L Pt := nil() roots := kinte(p,EPSILON) sketchRoots : L SF := nil() for root in roots repeat if (minVal <= root) and (root <= maxVal) then sketchRoots := cons(NFtoSF root,sketchRoots) null sketchRoots => [p,x,y,xMin,xMax,yMin,yMax,[lf,rt,bt,tp],htans,vtans,bran] if var = x then yMinSF := RNtoSF yMin; yMaxSF := RNtoSF yMax for rootSF in sketchRoots repeat tp := cons(pt1 := makePt(rootSF,yMaxSF),tp) bt := cons(pt2 := makePt(rootSF,yMinSF),bt) branch : L Pt := [pt1,pt2] bran := cons(branch,bran) else xMinSF := RNtoSF xMin; xMaxSF := RNtoSF xMax for rootSF in sketchRoots repeat rt := cons(pt1 := makePt(xMaxSF,rootSF),rt) lf := cons(pt2 := makePt(xMinSF,rootSF),lf) branch : L Pt := [pt1,pt2] bran := cons(branch,bran) [p,x,y,xMin,xMax,yMin,yMax,[lf,rt,bt,tp],htans,vtans,bran] makeLineSketch(p,x,y,xMin,xMax,yMin,yMax) == -- the case where p(x,y) = a x + b y + c with a ~= 0, b ~= 0 -- this is a line which is neither vertical nor horizontal xMinSF := RNtoSF xMin; xMaxSF := RNtoSF xMax yMinSF := RNtoSF yMin; yMaxSF := RNtoSF yMax -- determine the coefficients a, b, and c a := ground(coefficient(p,x,1)) :: SF b := ground(coefficient(p,y,1)) :: SF c := ground(coefficient(coefficient(p,x,0),y,0)) :: SF lf : L Pt := nil(); rt : L Pt := nil() bt : L Pt := nil(); tp : L Pt := nil() htans : L Pt := nil(); vtans : L Pt := nil() branch : L Pt := nil(); bran : L L Pt := nil() -- compute x coordinate of point on line with y = yMin xBottom := (- b*yMinSF - c)/a -- compute x coordinate of point on line with y = yMax xTop := (- b*yMaxSF - c)/a -- compute y coordinate of point on line with x = xMin yLeft := (- a*xMinSF - c)/b -- compute y coordinate of point on line with x = xMax yRight := (- a*xMaxSF - c)/b -- determine which of the above 4 points are in the region -- to be plotted and list them as a branch if (xMinSF < xBottom) and (xBottom < xMaxSF) then bt := cons(pt := makePt(xBottom,yMinSF),bt) branch := cons(pt,branch) if (xMinSF < xTop) and (xTop < xMaxSF) then tp := cons(pt := makePt(xTop,yMaxSF),tp) branch := cons(pt,branch) if (yMinSF <= yLeft) and (yLeft <= yMaxSF) then lf := cons(pt := makePt(xMinSF,yLeft),lf) branch := cons(pt,branch) if (yMinSF <= yRight) and (yRight <= yMaxSF) then rt := cons(pt := makePt(xMaxSF,yRight),rt) branch := cons(pt,branch) bran := cons(branch,bran) [p,x,y,xMin,xMax,yMin,yMax,[lf,rt,bt,tp],htans,vtans,bran] singValBetween?(xCurrent,xNext,xSingList) == for xVal in xSingList repeat (xCurrent < xVal) and (xVal < xNext) => return true false segmentInfo(f,lo,hi,botList,topList,singList,minSF,maxSF) == repeat -- 'current' is the smallest element of 'topList' and 'botList' -- 'currentFrom' records the list from which it was taken if null topList then if null botList then return [segment(lo,hi),hi,nil(),nil()] else current := first botList botList := rest botList currentFrom := BOTTOM else if null botList then current := first topList topList := rest topList currentFrom := TOP else bot := first botList top := first topList if bot < top then current := bot botList := rest botList currentFrom := BOTTOM else current := top topList := rest topList currentFrom := TOP -- 'nxt' is the next smallest element of 'topList' -- and 'botList' -- 'nextFrom' records the list from which it was taken if null topList then if null botList then return [segment(lo,hi),hi,nil(),nil()] else nxt := first botList botList := rest botList nextFrom := BOTTOM else if null botList then nxt := first topList topList := rest topList nextFrom := TOP else bot := first botList top := first topList if bot < top then nxt := bot botList := rest botList nextFrom := BOTTOM else nxt := top topList := rest topList nextFrom := TOP if currentFrom = nextFrom then if singValBetween?(current,nxt,singList) then return [segment(lo,current),nxt,botList,topList] else val := f((nxt - current)/2::SF) if (val <= minSF) or (val >= maxSF) then return [segment(lo,current),nxt,botList,topList] else if singValBetween?(current,nxt,singList) then return [segment(lo,current),nxt,botList,topList] makeRatFcnSketch(p,x,y,xMin,xMax,yMin,yMax,depVar) == -- the case where p(x,y) is linear in x or y -- Thus, one variable is a rational function of the other. -- Therefore, we may use the 2-dimensional function plotting -- package. The only problem is determining the intervals on -- on which the function is to be plotted. --!! corners: e.g. upper left corner is on graph with y' > 0 factoredP := p :: FR P I numberOfFactors(factoredP) > 1 => error "reducible polynomial" --!! sketch each factor dpdx := differentiate(p,x) dpdy := differentiate(p,y) pRN := coerceCoefsToRNs p xMinSF := RNtoSF xMin; xMaxSF := RNtoSF xMax yMinSF := RNtoSF yMin; yMaxSF := RNtoSF yMax xMinNF := RNtoNF xMin; xMaxNF := RNtoNF xMax yMinNF := RNtoNF yMin; yMaxNF := RNtoNF yMax -- 'p' is of degree 1 in the variable 'depVar'. -- Thus, 'depVar' is a rational function of the other variable. num := -coefficient(p,depVar,0) den := coefficient(p,depVar,1) numUPolySF := SFPolyToUPoly(coerceCoefsToSFs(num)) denUPolySF := SFPolyToUPoly(coerceCoefsToSFs(den)) -- this is the rational function f : SF -> SF := elt(numUPolySF,#1)/elt(denUPolySF,#1) -- values of the dependent and independent variables if depVar = x then indVarMin := yMin; indVarMax := yMax indVarMinNF := yMinNF; indVarMaxNF := yMaxNF indVarMinSF := yMinSF; indVarMaxSF := yMaxSF depVarMin := xMin; depVarMax := xMax depVarMinSF := xMinSF; depVarMaxSF := xMaxSF else indVarMin := xMin; indVarMax := xMax indVarMinNF := xMinNF; indVarMaxNF := xMaxNF indVarMinSF := xMinSF; indVarMaxSF := xMaxSF depVarMin := yMin; depVarMax := yMax depVarMinSF := yMinSF; depVarMaxSF := yMaxSF -- Create lists of critical points. htanPts := rsolve([p,dpdx],[x,y],EPSILON) vtanPts := rsolve([p,dpdy],[x,y],EPSILON) htans := listPtsInRect(htanPts,xMinNF,xMaxNF,yMinNF,yMaxNF) vtans := listPtsInRect(vtanPts,xMinNF,xMaxNF,yMinNF,yMaxNF) -- Create lists which will contain boundary points. lf : L Pt := nil(); rt : L Pt := nil() bt : L Pt := nil(); tp : L Pt := nil() -- Determine values of the independent variable at the which -- the rational function has a pole as well as the values of -- the independent variable for which there is a point on the -- upper or lower boundary. singList : L SF := roots : L NF := kinte(den,EPSILON) outList : L SF := nil() for root in roots repeat if (indVarMinNF < root) and (root < indVarMaxNF) then outList := cons(NFtoSF root,outList) sort(#1 < #2,outList) topList : L SF := roots : L NF := kinte(eval(pRN,depVar,depVarMax),EPSILON) outList : L SF := nil() for root in roots repeat if (indVarMinNF < root) and (root < indVarMaxNF) then outList := cons(NFtoSF root,outList) sort(#1 < #2,outList) botList : L SF := roots : L NF := kinte(eval(pRN,depVar,depVarMin),EPSILON) outList : L SF := nil() for root in roots repeat if (indVarMinNF < root) and (root < indVarMaxNF) then outList := cons(NFtoSF root,outList) sort(#1 < #2,outList) -- We wish to determine if the graph has points on the 'left' -- and 'right' boundaries, so we compute the value of the -- rational function at the lefthand and righthand values of -- the dependent variable. If the function has a singularity -- on the left or right boundary, then 'leftVal' or 'rightVal' -- is given a dummy valuewhich will convince the program that -- there is no point on the left or right boundary. denUPolyRN := RNPolyToUPoly(coerceCoefsToRNs(den)) if elt(denUPolyRN,indVarMin) = 0$RN then leftVal := depVarMinSF - (abs(depVarMinSF) + 1$SF) else leftVal := f(indVarMinSF) if elt(denUPolyRN,indVarMax) = 0$RN then rightVal := depVarMinSF - (abs(depVarMinSF) + 1$SF) else rightVal := f(indVarMaxSF) -- Now put boundary points on the appropriate lists. if depVar = x then if (xMinSF < leftVal) and (leftVal < xMaxSF) then bt := cons(makePt(leftVal,yMinSF),bt) if (xMinSF < rightVal) and (rightVal < xMaxSF) then tp := cons(makePt(rightVal,yMaxSF),tp) for val in botList repeat lf := cons(makePt(xMinSF,val),lf) for val in topList repeat rt := cons(makePt(xMaxSF,val),rt) else if (yMinSF < leftVal) and (leftVal < yMaxSF) then lf := cons(makePt(xMinSF,leftVal),lf) if (yMinSF < rightVal) and (rightVal < yMaxSF) then rt := cons(makePt(xMaxSF,rightVal),rt) for val in botList repeat bt := cons(makePt(val,yMinSF),bt) for val in topList repeat tp := cons(makePt(val,yMaxSF),tp) bran : L L Pt := nil() -- Determine segments on which the rational function is to -- be plotted. if (depVarMinSF < leftVal) and (leftVal < depVarMaxSF) then lo := indVarMinSF else if null topList then if null botList then return [p,x,y,xMin,xMax,yMin,yMax,[lf,rt,bt,tp],_ htans,vtans,bran] else lo := first botList botList := rest botList else if null botList then lo := first topList topList := rest topList else bot := first botList top := first topList if bot < top then lo := bot botList := rest botList else lo := top topList := rest topList hi := 0$SF -- @#$%^&* compiler if (depVarMinSF < rightVal) and (rightVal < depVarMaxSF) then hi := indVarMaxSF else if null topList then if null botList then error "makeRatFcnSketch: plot domain" else hi := last botList botList := remove(hi,botList) else if null botList then hi := last topList topList := remove(hi,topList) else bot := last botList top := last topList if bot > top then hi := bot botList := remove(hi,botList) else hi := top topList := remove(hi,topList) if (depVar = x) then (minSF := xMinSF; maxSF := xMaxSF) else (minSF := yMinSF; maxSF := yMaxSF) segList : L SEG SF := nil() repeat segInfo := segmentInfo(f,lo,hi,botList,topList,singList,_ minSF,maxSF) segList := cons(segInfo.seg,segList) lo := segInfo.left botList := segInfo.lowerVals topList := segInfo.upperVals if lo = hi then break for segment in segList repeat RFPlot : Plot := plot(f,segment) curve := first(listBranches(RFPlot)) if depVar = y then bran := cons(curve,bran) else bran := cons(map(swapCoords,curve),bran) [p,x,y,xMin,xMax,yMin,yMax,[lf,rt,bt,tp],htans,vtans,bran] --% the general case makeGeneralSketch(pol,x,y,xMin,xMax,yMin,yMax) == --!! corners of region should not be on curve --!! enlarge region if necessary factoredPol := pol :: FR P I numberOfFactors(factoredPol) > 1 => error "reducible polynomial" --!! sketch each factor p := nthFactor(factoredPol,1) dpdx := differentiate(p,x); dpdy := differentiate(p,y) xMinNF := RNtoNF xMin; xMaxNF := RNtoNF xMax yMinNF := RNtoNF yMin; yMaxNF := RNtoNF yMax -- compute singular points; error if singularities in region singPts := rsolve([p,dpdx,dpdy],[x,y],EPSILON) -- ptsSuchThat?(singPts,inRect?(#1,xMinNF,xMaxNF,yMinNF,yMaxNF)) => foo : L NF -> B := inRect?(#1,xMinNF,xMaxNF,yMinNF,yMaxNF) ptsSuchThat?(singPts,foo) => error "singular pts in region of sketch" -- compute critical points htanPts := rsolve([p,dpdx],[x,y],EPSILON) vtanPts := rsolve([p,dpdy],[x,y],EPSILON) critPts := append(htanPts,vtanPts) -- if there are critical points on the boundary, then enlarge -- the region, but be sure that the new region does not contain -- any singular points hInc : RN := (1/20) * (xMax - xMin) vInc : RN := (1/20) * (yMax - yMin) -- if ptsSuchThat?(critPts,onVertSeg?(#1,yMinNF,yMaxNF,xMinNF)) then foo : L NF -> B := onVertSeg?(#1,yMinNF,yMaxNF,xMinNF) if ptsSuchThat?(critPts,foo) then xMin := newX(critPts,singPts,yMinNF,yMaxNF,xMinNF,xMin,-hInc) xMinNF := RNtoNF xMin -- if ptsSuchThat?(critPts,onVertSeg?(#1,yMinNF,yMaxNF,xMaxNF)) then foo : L NF -> B := onVertSeg?(#1,yMinNF,yMaxNF,xMaxNF) if ptsSuchThat?(critPts,foo) then xMax := newX(critPts,singPts,yMinNF,yMaxNF,xMaxNF,xMax,hInc) xMaxNF := RNtoNF xMax -- if ptsSuchThat?(critPts,onHorzSeg?(#1,xMinNF,xMaxNF,yMinNF)) then foo : L NF -> B := onHorzSeg?(#1,xMinNF,xMaxNF,yMinNF) if ptsSuchThat?(critPts,foo) then yMin := newY(critPts,singPts,xMinNF,xMaxNF,yMinNF,yMin,-vInc) yMinNF := RNtoNF yMin -- if ptsSuchThat?(critPts,onHorzSeg?(#1,xMinNF,xMaxNF,yMaxNF)) then foo : L NF -> B := onHorzSeg?(#1,xMinNF,xMaxNF,yMaxNF) if ptsSuchThat?(critPts,foo) then yMax := newY(critPts,singPts,xMinNF,xMaxNF,yMaxNF,yMax,vInc) yMaxNF := RNtoNF yMax htans := listPtsInRect(htanPts,xMinNF,xMaxNF,yMinNF,yMaxNF) vtans := listPtsInRect(vtanPts,xMinNF,xMaxNF,yMinNF,yMaxNF) crits := append(htans,vtans) -- conversions to DoubleFloats xMinSF := RNtoSF xMin; xMaxSF := RNtoSF xMax yMinSF := RNtoSF yMin; yMaxSF := RNtoSF yMax corners := makeCorners(xMinSF,xMaxSF,yMinSF,yMaxSF) pSF := coerceCoefsToSFs p dpdxSF := coerceCoefsToSFs dpdx dpdySF := coerceCoefsToSFs dpdy delta := min((xMaxSF - xMinSF)/25,(yMaxSF - yMinSF)/25) err := min(delta/100,PLOTERR/100) bound : PI := 10 -- compute points on the boundary pRN := coerceCoefsToRNs(p) lf : L Pt := listPtsOnVertBdry(pRN,x,xMin,yMinNF,yMaxNF) rt : L Pt := listPtsOnVertBdry(pRN,x,xMax,yMinNF,yMaxNF) bt : L Pt := listPtsOnHorizBdry(pRN,y,yMin,xMinNF,xMaxNF) tp : L Pt := listPtsOnHorizBdry(pRN,y,yMax,xMinNF,xMaxNF) bdPts : BoundaryPts := [lf,rt,bt,tp] bran := traceBranches(pSF,dpdxSF,dpdySF,x,y,corners,delta,err,_ bound,crits,bdPts) [p,x,y,xMin,xMax,yMin,yMax,bdPts,htans,vtans,bran] refine(plot,stepFraction) == p := plot.poly; x := plot.xVar; y := plot.yVar dpdx := differentiate(p,x); dpdy := differentiate(p,y) pSF := coerceCoefsToSFs p dpdxSF := coerceCoefsToSFs dpdx dpdySF := coerceCoefsToSFs dpdy xMin := plot.minXVal; xMax := plot.maxXVal yMin := plot.minYVal; yMax := plot.maxYVal xMinSF := RNtoSF xMin; xMaxSF := RNtoSF xMax yMinSF := RNtoSF yMin; yMaxSF := RNtoSF yMax corners := makeCorners(xMinSF,xMaxSF,yMinSF,yMaxSF) pSF := coerceCoefsToSFs p dpdxSF := coerceCoefsToSFs dpdx dpdySF := coerceCoefsToSFs dpdy delta := stepFraction * min((xMaxSF - xMinSF)/25,(yMaxSF - yMinSF)/25) err := min(delta/100,PLOTERR/100) bound : PI := 10 crits := append(plot.hTanPts,plot.vTanPts) bdPts := plot.bdryPts bran := traceBranches(pSF,dpdxSF,dpdySF,x,y,corners,delta,err,_ bound,crits,bdPts) htans := plot.hTanPts; vtans := plot.vTanPts [p,x,y,xMin,xMax,yMin,yMax,bdPts,htans,vtans,bran] traceBranches(pSF,dpdxSF,dpdySF,x,y,corners,delta,err,bound,_ crits,bdPts) == -- for boundary points, trace curve from boundary to boundary -- add the branch to the list of branches -- update list of boundary points by deleting first and last -- points on this branch -- update list of critical points by deleting any critical -- points which were plotted lf := bdPts.left; rt := bdPts.right tp := bdPts.top ; bt := bdPts.bottom bdry := append(append(lf,rt),append(bt,tp)) bran : L L Pt := nil() while not null bdry repeat pt := first bdry p0 := dummyFirstPt(pt,dpdxSF,dpdySF,x,y,lf,rt,bt,tp) segInfo := listPtsOnSegment(pSF,dpdxSF,dpdySF,x,y,p0,pt,_ corners,delta,err,bound,crits,bdry) bran := cons(first segInfo,bran) crits := second segInfo bdry := third segInfo -- trace loops beginning and ending with critical points -- add the branch to the list of branches -- update list of critical points by deleting any critical -- points which were plotted while not null crits repeat pt := first crits segInfo := listPtsOnLoop(pSF,dpdxSF,dpdySF,x,y,pt,_ corners,delta,err,bound,crits,bdry) bran := cons(first segInfo,bran) crits := second segInfo bran dummyFirstPt(p1,dpdxSF,dpdySF,x,y,lf,rt,bt,tp) == -- The function 'computeNextPt' requires 2 points, p0 and p1. -- When computing the second point on a branch which starts -- on the boundary, we use the boundary point as p1 and the -- 'dummy' point returned by this function as p0. x1 := xCoord p1; y1 := yCoord p1 zero := 0$SF; one := 1$SF px := ground(eval(dpdxSF,[x,y],[x1,y1])) py := ground(eval(dpdySF,[x,y],[x1,y1])) if px * py < zero then -- positive slope at p1 member?(p1,lf) or member?(p1,bt) => makePt(x1 - one,y1 - one) makePt(x1 + one,y1 + one) else member?(p1,lf) or member?(p1,tp) => makePt(x1 - one,y1 + one) makePt(x1 + one,y1 - one) listPtsOnSegment(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_ delta,err,bound,crits,bdry) == -- p1 is a boundary point; p0 is a 'dummy' point bdry := remove(p1,bdry) pointList : L Pt := [p1] ptInfo := computeNextPt(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_ delta,err,bound,crits,bdry) p2 := ptInfo.newPt ptInfo.type = BDRY => bdry := remove(p2,bdry) pointList := cons(p2,pointList) [pointList,crits,bdry] if ptInfo.type = CRIT then crits := remove(p2,crits) pointList := cons(p2,pointList) repeat pt0 := second pointList; pt1 := first pointList ptInfo := computeNextPt(pSF,dpdxSF,dpdySF,x,y,pt0,pt1,corners,_ delta,err,bound,crits,bdry) p2 := ptInfo.newPt ptInfo.type = BDRY => bdry := remove(p2,bdry) pointList := cons(p2,pointList) return [pointList,crits,bdry] if ptInfo.type = CRIT then crits := remove(p2,crits) pointList := cons(p2,pointList) --!! delete next line (compiler bug) [pointList,crits,bdry] listPtsOnLoop(pSF,dpdxSF,dpdySF,x,y,p1,corners,_ delta,err,bound,crits,bdry) == x1 := xCoord p1; y1 := yCoord p1 px := ground(eval(dpdxSF,[x,y],[x1,y1])) py := ground(eval(dpdySF,[x,y],[x1,y1])) p0 := makePt(x1 - 1$SF,y1 - 1$SF) pointList : L Pt := [p1] ptInfo := computeNextPt(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_ delta,err,bound,crits,bdry) p2 := ptInfo.newPt ptInfo.type = BDRY => error "boundary reached while on loop" if ptInfo.type = CRIT then p1 = p2 => error "first and second points on loop are identical" crits := remove(p2,crits) pointList := cons(p2,pointList) repeat pt0 := second pointList; pt1 := first pointList ptInfo := computeNextPt(pSF,dpdxSF,dpdySF,x,y,pt0,pt1,corners,_ delta,err,bound,crits,bdry) p2 := ptInfo.newPt ptInfo.type = BDRY => error "boundary reached while on loop" if ptInfo.type = CRIT then crits := remove(p2,crits) p1 = p2 => pointList := cons(p2,pointList) return [pointList,crits,bdry] pointList := cons(p2,pointList) --!! delete next line (compiler bug) [pointList,crits,bdry] computeNextPt(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_ delta,err,bound,crits,bdry) == -- p0=(x0,y0) and p1=(x1,y1) are the last two points on the curve. -- The function computes the next point on the curve. -- The function determines if the next point is a critical point -- or a boundary point. -- The function returns a record of the form -- Record(newPt:Pt,type:String). -- If the new point is a boundary point, then 'type' is -- "boundary point" and 'newPt' is a boundary point to be -- deleted from the list of boundary points yet to be plotted. -- Similarly, if the new point is a critical point, then 'type' is -- "critical point" and 'newPt' is a critical point to be -- deleted from the list of critical points yet to be plotted. -- If the new point is neither a critical point nor a boundary -- point, then 'type' is "nothing in particular". xMinSF := getXMin corners; xMaxSF := getXMax corners yMinSF := getYMin corners; yMaxSF := getYMax corners x0 := xCoord p0; y0 := yCoord p0 x1 := xCoord p1; y1 := yCoord p1 px := ground(eval(dpdxSF,[x,y],[x1,y1])) py := ground(eval(dpdySF,[x,y],[x1,y1])) -- let m be the slope of the tangent line at p1 -- if |m| < 1, we will increment the x-coordinate by delta -- (indicated by 'incVar = x'), find an approximate -- y-coordinate using the tangent line, then find the actual -- y-coordinate using a Newton iteration if abs(py) > abs(px) then incVar0 := incVar := x deltaX := (if x1 > x0 then delta else -delta) x2Approx := x1 + deltaX y2Approx := y1 + (-px/py)*deltaX -- if |m| >= 1, we interchange the roles of the x- and y- -- coordinates else incVar0 := incVar := y deltaY := (if y1 > y0 then delta else -delta) x2Approx := x1 + (-py/px)*deltaY y2Approx := y1 + deltaY lookingFor := NADA -- See if (x2Approx,y2Approx) is out of bounds. -- If so, find where the line segment connecting (x1,y1) and -- (x2Approx,y2Approx) intersects the boundary and use this -- point as (x2Approx,y2Approx). -- If the resulting point is on the left or right boundary, -- we will now consider x as the 'incremented variable' and we -- will compute the y-coordinate using a Newton iteration. -- Similarly, if the point is on the top or bottom boundary, -- we will consider y as the 'incremented variable' and we -- will compute the x-coordinate using a Newton iteration. if x2Approx >= xMaxSF then incVar := x lookingFor := BDRY x2Approx := xMaxSF y2Approx := y1 + (-px/py)*(x2Approx - x1) else if x2Approx <= xMinSF then incVar := x lookingFor := BDRY x2Approx := xMinSF y2Approx := y1 + (-px/py)*(x2Approx - x1) if y2Approx >= yMaxSF then incVar := y lookingFor := BDRY y2Approx := yMaxSF x2Approx := x1 + (-py/px)*(y2Approx - y1) else if y2Approx <= yMinSF then incVar := y lookingFor := BDRY y2Approx := yMinSF x2Approx := x1 + (-py/px)*(y2Approx - y1) -- set xLo = min(x1,x2Approx), xHi = max(x1,x2Approx) -- set yLo = min(y1,y2Approx), yHi = max(y1,y2Approx) if x1 < x2Approx then xLo := x1 xHi := x2Approx else xLo := x2Approx xHi := x1 if y1 < y2Approx then yLo := y1 yHi := y2Approx else yLo := y2Approx yHi := y1 -- check for critical points (x*,y*) with x* between -- x1 and x2Approx or y* between y1 and y2Approx -- store values of x2Approx and y2Approx x2Approxx := x2Approx y2Approxx := y2Approx -- xPointList will contain all critical points (x*,y*) -- with x* between x1 and x2Approx xPointList : L Pt := nil() -- yPointList will contain all critical points (x*,y*) -- with y* between y1 and y2Approx yPointList : L Pt := nil() for pt in crits repeat xx := xCoord pt; yy := yCoord pt -- if x1 = x2Approx, then p1 is a point with horizontal -- tangent line -- in this case, we don't want critical points with -- x-coordinate x1 if xx = x2Approx and not (xx = x1) then if min(abs(yy-yLo),abs(yy-yHi)) < delta then xPointList := cons(pt,xPointList) if ((xLo < xx) and (xx < xHi)) then if min(abs(yy-yLo),abs(yy-yHi)) < delta then xPointList := cons(pt,nil()) x2Approx := xx if xx < x1 then xLo := xx else xHi := xx -- if y1 = y2Approx, then p1 is a point with vertical -- tangent line -- in this case, we don't want critical points with -- y-coordinate y1 if yy = y2Approx and not (yy = y1) then yPointList := cons(pt,yPointList) if ((yLo < yy) and (yy < yHi)) then if min(abs(xx-xLo),abs(xx-xHi)) < delta then yPointList := cons(pt,nil()) y2Approx := yy if yy < y1 then yLo := yy else yHi := yy -- points in both xPointList and yPointList if (not null xPointList) and (not null yPointList) then xPointList = yPointList => -- this implies that the lists have only one point incVar := incVar0 if incVar = x then y2Approx := y1 + (-px/py)*(x2Approx - x1) else x2Approx := x1 + (-py/px)*(y2Approx - y1) lookingFor := CRIT -- proceed incVar0 = x => -- first try Newton iteration with 'y' as incremented variable x2Temp := x1 + (-py/px)*(y2Approx - y1) f := SFPolyToUPoly(eval(pSF,y,y2Approx)) x2New := newtonApprox(f,x2Temp,err,bound) x2New case "failed" => y2Approx := y1 + (-px/py)*(x2Approx - x1) incVar := x lookingFor := CRIT -- proceed y2Temp := y1 + (-px/py)*(x2Approx - x1) f := SFPolyToUPoly(eval(pSF,x,x2Approx)) y2New := newtonApprox(f,y2Temp,err,bound) y2New case "failed" => return computeNextPt(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_ abs((x2Approx-x1)/2),err,bound,crits,bdry) pt1 := makePt(x2Approx,y2New :: SF) pt2 := makePt(x2New :: SF,y2Approx) critPt1 := findPtOnList(pt1,crits) critPt2 := findPtOnList(pt2,crits) (critPt1 case "failed") and (critPt2 case "failed") => abs(x2Approx - x1) > abs(x2Temp - x1) => return [pt1,NADA] return [pt2,NADA] (critPt1 case "failed") => return [critPt2::Pt,CRIT] (critPt2 case "failed") => return [critPt1::Pt,CRIT] abs(x2Approx - x1) > abs(x2Temp - x1) => return [critPt2::Pt,CRIT] return [critPt1::Pt,CRIT] y2Temp := y1 + (-px/py)*(x2Approx - x1) f := SFPolyToUPoly(eval(pSF,x,x2Approx)) y2New := newtonApprox(f,y2Temp,err,bound) y2New case "failed" => x2Approx := x1 + (-py/px)*(y2Approx - y1) incVar := y lookingFor := CRIT -- proceed x2Temp := x1 + (-py/px)*(y2Approx - y1) f := SFPolyToUPoly(eval(pSF,y,y2Approx)) x2New := newtonApprox(f,x2Temp,err,bound) x2New case "failed" => return computeNextPt(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_ abs((y2Approx-y1)/2),err,bound,crits,bdry) pt1 := makePt(x2Approx,y2New :: SF) pt2 := makePt(x2New :: SF,y2Approx) critPt1 := findPtOnList(pt1,crits) critPt2 := findPtOnList(pt2,crits) (critPt1 case "failed") and (critPt2 case "failed") => abs(y2Approx - y1) > abs(y2Temp - y1) => return [pt2,NADA] return [pt1,NADA] (critPt1 case "failed") => return [critPt2::Pt,CRIT] (critPt2 case "failed") => return [critPt1::Pt,CRIT] abs(y2Approx - y1) > abs(y2Temp - y1) => return [critPt1::Pt,CRIT] return [critPt2::Pt,CRIT] if (not null xPointList) and (null yPointList) then y2Approx := y1 + (-px/py)*(x2Approx - x1) incVar0 = x => incVar := x lookingFor := CRIT -- proceed f := SFPolyToUPoly(eval(pSF,x,x2Approx)) y2New := newtonApprox(f,y2Approx,err,bound) y2New case "failed" => x2Approx := x2Approxx y2Approx := y2Approxx -- proceed pt := makePt(x2Approx,y2New::SF) critPt := findPtOnList(pt,crits) critPt case "failed" => return [pt,NADA] return [critPt :: Pt,CRIT] if (null xPointList) and (not null yPointList) then x2Approx := x1 + (-py/px)*(y2Approx - y1) incVar0 = y => incVar := y lookingFor := CRIT -- proceed f := SFPolyToUPoly(eval(pSF,y,y2Approx)) x2New := newtonApprox(f,x2Approx,err,bound) x2New case "failed" => x2Approx := x2Approxx y2Approx := y2Approxx -- proceed pt := makePt(x2New::SF,y2Approx) critPt := findPtOnList(pt,crits) critPt case "failed" => return [pt,NADA] return [critPt :: Pt,CRIT] if incVar = x then x2 := x2Approx f := SFPolyToUPoly(eval(pSF,x,x2)) y2New := newtonApprox(f,y2Approx,err,bound) y2New case "failed" => return computeNextPt(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_ abs((x2-x1)/2),err,bound,crits,bdry) y2 := y2New :: SF else y2 := y2Approx f := SFPolyToUPoly(eval(pSF,y,y2)) x2New := newtonApprox(f,x2Approx,err,bound) x2New case "failed" => return computeNextPt(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_ abs((y2-y1)/2),err,bound,crits,bdry) x2 := x2New :: SF pt := makePt(x2,y2) --!! check that 'pt' is not out of bounds -- check if you've gotten a critical or boundary point lookingFor = NADA => [pt,lookingFor] lookingFor = BDRY => bdryPt := findPtOnList(pt,bdry) bdryPt case "failed" => error "couldn't find boundary point" [bdryPt :: Pt,BDRY] critPt := findPtOnList(pt,crits) critPt case "failed" => [pt,NADA] [critPt :: Pt,CRIT] --% Newton iterations newtonApprox(f,a0,err,bound) == -- Newton iteration to approximate a root of the polynomial 'f' -- using an initial approximation of 'a0' -- Newton iteration terminates when consecutive approximations -- are within 'err' of each other -- returns "failed" if this has not been achieved after 'bound' -- iterations Df := differentiate f oldApprox := a0 newApprox := a0 - elt(f,a0)/elt(Df,a0) i : PI := 1 while abs(newApprox - oldApprox) > err repeat i = bound => return "failed" oldApprox := newApprox newApprox := oldApprox - elt(f,oldApprox)/elt(Df,oldApprox) i := i+1 newApprox --% graphics output listBranches(acplot) == acplot.branches --% terminal output coerce(acplot:%) == pp := acplot.poly :: OUT xx := acplot.xVar :: OUT yy := acplot.yVar :: OUT xLo := acplot.minXVal :: OUT xHi := acplot.maxXVal :: OUT yLo := acplot.minYVal :: OUT yHi := acplot.maxYVal :: OUT zip := message(" = 0") com := message(", ") les := message(" <= ") l : L OUT := [pp,zip,com,xLo,les,xx,les,xHi,com,yLo,les,yy,les,yHi] f : L OUT := nil() for branch in acplot.branches repeat ll : L OUT := [p :: OUT for p in branch] f := cons(vconcat ll,f) ff := vconcat(hconcat l,vconcat f) vconcat(message "ACPLOT",ff) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package REALSOLV RealSolvePackage>> <<domain ACPLOT PlaneAlgebraicCurvePlot>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}