From 95a8891a808572509f7449aa32022df42f8b7ab8 Mon Sep 17 00:00:00 2001 From: dos-reis Date: Mon, 26 Apr 2010 02:05:39 +0000 Subject: * algebra/carten.spad.pamphlet (CartesianTensor): Satisfy instantiation of Eltable. * algebra/clifford.spad.pamphlet (QuadraticForm): Likewise. * algebra/domain.spad.pamphlet (DomainTemplate): Likewise. * algebra/files.spad.pamphlet (Library): Likewise. * algebra/aggcat.spad.pamphlet (LinearAggregate): Extend instantiation of Eltable. * algebra/naalg.spad.pamphlet (FiniteRankNonAssociativeAlgebra): Likewise. * algebra/pscat.spad.pamphlet (UnivariatePowerSeriesCategory): Likewise. * algebra/sex.spad.pamphlet (SExpressionCategory): Likewise. * algebra/Makefile.pamphlet: Update rules. --- src/share/algebra/browse.daase | 188 ++++++++++++++++++++--------------------- 1 file changed, 94 insertions(+), 94 deletions(-) (limited to 'src/share/algebra/browse.daase') diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index d5c92bcf..1ff96889 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,5 +1,5 @@ -(2268346 . 3481068679) +(2266417 . 3481235699) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL @@ -88,7 +88,7 @@ NIL ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -1709 UP UPUP -4299) +(-40 -1709 UP UPUP -1909) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) ((-4445 |has| (-413 |#2|) (-368)) (-4450 |has| (-413 |#2|) (-368)) (-4444 |has| (-413 |#2|) (-368)) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T)) ((|HasCategory| (-413 |#2|) (QUOTE (-146))) (|HasCategory| (-413 |#2|) (QUOTE (-148))) (|HasCategory| (-413 |#2|) (QUOTE (-354))) (-2892 (|HasCategory| (-413 |#2|) (QUOTE (-368))) (|HasCategory| (-413 |#2|) (QUOTE (-354)))) (|HasCategory| (-413 |#2|) (QUOTE (-368))) (|HasCategory| (-413 |#2|) (QUOTE (-373))) (-2892 (-12 (|HasCategory| (-413 |#2|) (QUOTE (-235))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (|HasCategory| (-413 |#2|) (QUOTE (-354)))) (-2892 (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-354))))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -645) (QUOTE (-570)))) (-2892 (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-373))) (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (-12 (|HasCategory| (-413 |#2|) (QUOTE (-235))) (|HasCategory| (-413 |#2|) (QUOTE (-368))))) @@ -111,7 +111,7 @@ NIL (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) ((-4452 . T) (-4453 . T)) -((-2892 (-12 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-856))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2340) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2340) (|devaluate| |#2|))))))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-856))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-856))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2340) (|devaluate| |#2|))))))) +((-2892 (-12 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-856))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2339) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2339) (|devaluate| |#2|))))))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-856))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-856))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2339) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL @@ -172,59 +172,59 @@ NIL ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) ((-4452 . T) (-4453 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2892 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) -(-61 -3599) +(-61 -3600) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -3599) +(-62 -3600) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -3599) +(-63 -3600) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -3599) +(-64 -3600) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -3599) +(-65 -3600) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -3599) +(-66 -3600) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -3599) +(-67 -3600) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -3599) +(-68 -3600) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -3599) +(-69 -3600) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -3599) +(-70 -3600) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -3599) +(-71 -3600) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -3599) +(-72 -3600) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -3599) +(-73 -3600) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -3599) +(-74 -3600) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -236,55 +236,55 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -3599) +(-77 -3600) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -3599) +(-78 -3600) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -3599) +(-79 -3600) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -3599) +(-80 -3600) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -3599) +(-81 -3600) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -3599) +(-82 -3600) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -3599) +(-83 -3600) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -3599) +(-84 -3600) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -3599) +(-85 -3600) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -3599) +(-86 -3600) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -3599) +(-87 -3600) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -3599) +(-88 -3600) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-89 -3599) +(-89 -3600) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -472,12 +472,12 @@ NIL ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) (((-4454 "*") . T)) NIL -(-136 |minix| -2549 S T$) +(-136 |minix| -2550 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-137 |minix| -2549 R) -((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) +(-137 |minix| -2550 R) +((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL (-138) @@ -884,19 +884,19 @@ NIL ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-239 S -2549 R) +(-239 S -2550 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL ((|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (QUOTE (-854))) (|HasAttribute| |#3| (QUOTE -4449)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (QUOTE (-1109)))) -(-240 -2549 R) +(-240 -2550 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) ((-4446 |has| |#2| (-1058)) (-4447 |has| |#2| (-1058)) (-4449 |has| |#2| (-6 -4449)) ((-4454 "*") |has| |#2| (-174)) (-4452 . T)) NIL -(-241 -2549 A B) +(-241 -2550 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-242 -2549 R) +(-242 -2550 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) ((-4446 |has| |#2| (-1058)) (-4447 |has| |#2| (-1058)) (-4449 |has| |#2| (-6 -4449)) ((-4454 "*") |has| |#2| (-174)) (-4452 . T)) ((-2892 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-2892 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-368))) (-2892 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2892 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-799))) (-2892 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854)))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-732))) (-2892 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (-2892 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2892 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2892 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2892 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-235))) (-2892 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| |#2| (QUOTE (-1109))) (-2892 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-235)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-373)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-799)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-854)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109))))) (-2892 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-2892 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-2892 (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasAttribute| |#2| (QUOTE -4449)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))))) @@ -937,16 +937,16 @@ NIL NIL NIL (-252) -((|constructor| (NIL "Represntation of domain templates resulting from compiling a domain constructor")) (|elt| (((|Syntax|) $ (|NonNegativeInteger|)) "\\spad{x.i} yields the entry at slot \\spad{i} in \\spad{x}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# x} returns the length of the domain template \\spad{x}."))) +((|constructor| (NIL "Represntation of domain templates resulting from compiling a domain constructor")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# x} returns the length of the domain template \\spad{x}."))) NIL NIL (-253 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4449 -2892 (-1809 (|has| |#4| (-1058)) (|has| |#4| (-235))) (-1809 (|has| |#4| (-1058)) (|has| |#4| (-907 (-1186)))) (|has| |#4| (-6 -4449)) (-1809 (|has| |#4| (-1058)) (|has| |#4| (-645 (-570))))) (-4446 |has| |#4| (-1058)) (-4447 |has| |#4| (-1058)) ((-4454 "*") |has| |#4| (-174)) (-4452 . T)) +((-4449 -2892 (-1808 (|has| |#4| (-1058)) (|has| |#4| (-235))) (-1808 (|has| |#4| (-1058)) (|has| |#4| (-907 (-1186)))) (|has| |#4| (-6 -4449)) (-1808 (|has| |#4| (-1058)) (|has| |#4| (-645 (-570))))) (-4446 |has| |#4| (-1058)) (-4447 |has| |#4| (-1058)) ((-4454 "*") |has| |#4| (-174)) (-4452 . T)) ((-2892 (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-799))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-854))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#4| (QUOTE (-368))) (-2892 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (QUOTE (-1058)))) (-2892 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-368)))) (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-799))) (-2892 (|HasCategory| |#4| (QUOTE (-799))) (|HasCategory| |#4| (QUOTE (-854)))) (|HasCategory| |#4| (QUOTE (-854))) (|HasCategory| |#4| (QUOTE (-732))) (-2892 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-1058)))) (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))) (-2892 (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1058)))) (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1109))) (-2892 (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-235)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-368)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-373)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-732)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-799)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-854)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-1058)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-1109))))) (-2892 (-12 (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-799))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-854))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-1058))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-2892 (-12 (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-799))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-854))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1058)))) (-2892 (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1058)))) (|HasCategory| |#4| (QUOTE (-732))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-2892 (|HasCategory| |#4| (QUOTE (-1058))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-1109)))) (-2892 (|HasAttribute| |#4| (QUOTE -4449)) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1058)))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|))))) (-254 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4449 -2892 (-1809 (|has| |#3| (-1058)) (|has| |#3| (-235))) (-1809 (|has| |#3| (-1058)) (|has| |#3| (-907 (-1186)))) (|has| |#3| (-6 -4449)) (-1809 (|has| |#3| (-1058)) (|has| |#3| (-645 (-570))))) (-4446 |has| |#3| (-1058)) (-4447 |has| |#3| (-1058)) ((-4454 "*") |has| |#3| (-174)) (-4452 . T)) +((-4449 -2892 (-1808 (|has| |#3| (-1058)) (|has| |#3| (-235))) (-1808 (|has| |#3| (-1058)) (|has| |#3| (-907 (-1186)))) (|has| |#3| (-6 -4449)) (-1808 (|has| |#3| (-1058)) (|has| |#3| (-645 (-570))))) (-4446 |has| |#3| (-1058)) (-4447 |has| |#3| (-1058)) ((-4454 "*") |has| |#3| (-174)) (-4452 . T)) ((-2892 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#3| (QUOTE (-368))) (-2892 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1058)))) (-2892 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-368)))) (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-799))) (-2892 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (QUOTE (-854)))) (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (QUOTE (-732))) (-2892 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1058)))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (-2892 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1109))) (-2892 (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-235)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-373)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-732)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-799)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-854)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1058)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1109))))) (-2892 (-12 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1058))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-2892 (-12 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (-2892 (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (|HasCategory| |#3| (QUOTE (-732))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-2892 (|HasCategory| |#3| (QUOTE (-1058))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1109)))) (-2892 (|HasAttribute| |#3| (QUOTE -4449)) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))))) (-255 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) @@ -1088,8 +1088,8 @@ NIL ((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) NIL NIL -(-290 S |Index|) -((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}."))) +(-290 S T$) +((|constructor| (NIL "An eltable over domains \\spad{S} and \\spad{T} is a structure which can be viewed as a function from \\spad{S} to \\spad{T}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,s)} (also written: \\spad{u.s}) returns the value of \\spad{u} at \\spad{s}. Error: if \\spad{u} is not defined at \\spad{s}."))) NIL NIL (-291 S |Dom| |Im|) @@ -1100,8 +1100,8 @@ NIL ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-293 S R |Mod| -2077 -2948 |exactQuo|) -((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) +(-293 S R |Mod| -3733 -2483 |exactQuo|) +((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) ((-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T)) NIL (-294) @@ -1127,7 +1127,7 @@ NIL (-299 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) ((-4452 . T) (-4453 . T)) -((-12 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2340) (|devaluate| |#2|)))))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -619) (QUOTE (-868))))) +((-12 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2339) (|devaluate| |#2|)))))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -619) (QUOTE (-868))))) (-300) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL @@ -1210,7 +1210,7 @@ NIL NIL (-320 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4449 -2892 (-1809 (|has| |#1| (-1058)) (|has| |#1| (-645 (-570)))) (-12 (|has| |#1| (-562)) (-2892 (-1809 (|has| |#1| (-1058)) (|has| |#1| (-645 (-570)))) (|has| |#1| (-1058)) (|has| |#1| (-479)))) (|has| |#1| (-1058)) (|has| |#1| (-479))) (-4447 |has| |#1| (-174)) (-4446 |has| |#1| (-174)) ((-4454 "*") |has| |#1| (-562)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-562)) (-4444 |has| |#1| (-562))) +((-4449 -2892 (-1808 (|has| |#1| (-1058)) (|has| |#1| (-645 (-570)))) (-12 (|has| |#1| (-562)) (-2892 (-1808 (|has| |#1| (-1058)) (|has| |#1| (-645 (-570)))) (|has| |#1| (-1058)) (|has| |#1| (-479)))) (|has| |#1| (-1058)) (|has| |#1| (-479))) (-4447 |has| |#1| (-174)) (-4446 |has| |#1| (-174)) ((-4454 "*") |has| |#1| (-562)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-562)) (-4444 |has| |#1| (-562))) ((-2892 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| |#1| (QUOTE (-562))) (-2892 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1058)))) (|HasCategory| |#1| (QUOTE (-21))) (-2892 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (-2892 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2892 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (-2892 (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1058)))) (-2892 (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1058)))) (-2892 (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1058)))) (-12 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562)))) (-2892 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570))))) (-2892 (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2892 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))))) (-2892 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2892 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))))) (-2892 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-1058)))) (-2892 (-12 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| $ (QUOTE (-1058))) (|HasCategory| $ (LIST (QUOTE -1047) (QUOTE (-570))))) (-321 R -1709) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) @@ -1223,7 +1223,7 @@ NIL (-323 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) (((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-2892 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -3802) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2892 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -3170) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1755) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-2892 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -3802) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2892 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2833) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1756) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|))))))) (-324 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1544,7 +1544,7 @@ NIL ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) NIL NIL -(-404 -3599 |returnType| -3931 |symbols|) +(-404 -3600 |returnType| -3931 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL @@ -1617,17 +1617,17 @@ NIL NIL NIL (-422 S R) -((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) +((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL ((|HasCategory| |#2| (QUOTE (-368)))) (-423 R) -((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) +((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) ((-4449 |has| |#1| (-562)) (-4447 . T) (-4446 . T)) NIL (-424 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) ((-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T)) -((|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -313) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -290) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-1231))) (-2892 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-1231)))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-458)))) +((|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -313) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -290) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-1231))) (-2892 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-1231)))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))) (-2892 (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (QUOTE $) (QUOTE $)))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-458)))) (-425 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL @@ -1851,11 +1851,11 @@ NIL (-480 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) (((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-2892 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -3802) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2892 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -3170) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1755) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-2892 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -3802) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2892 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2833) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1756) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|))))))) (-481 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) ((-4453 . T)) -((-12 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2340) (|devaluate| |#2|)))))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-856))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109)))) +((-12 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2339) (|devaluate| |#2|)))))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-856))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109)))) (-482 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) ((-4453 . T) (-4452 . T)) @@ -1871,7 +1871,7 @@ NIL (-485 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) ((-4452 . T) (-4453 . T)) -((-12 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2340) (|devaluate| |#2|)))))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -619) (QUOTE (-868))))) +((-12 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2339) (|devaluate| |#2|)))))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -619) (QUOTE (-868))))) (-486) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL @@ -1880,7 +1880,7 @@ NIL ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4454 "*") |has| |#2| (-174)) (-4445 |has| |#2| (-562)) (-4450 |has| |#2| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T)) ((|HasCategory| |#2| (QUOTE (-916))) (-2892 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-2892 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-2892 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (-2892 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2892 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368))) (|HasAttribute| |#2| (QUOTE -4450)) (|HasCategory| |#2| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-2892 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-488 -2549 S) +(-488 -2550 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4446 |has| |#2| (-1058)) (-4447 |has| |#2| (-1058)) (-4449 |has| |#2| (-6 -4449)) ((-4454 "*") |has| |#2| (-174)) (-4452 . T)) ((-2892 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-2892 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-368))) (-2892 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2892 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-799))) (-2892 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854)))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-732))) (-2892 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (-2892 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2892 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2892 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2892 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-235))) (-2892 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| |#2| (QUOTE (-1109))) (-2892 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-235)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-373)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-799)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-854)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109))))) (-2892 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-2892 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-2892 (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasAttribute| |#2| (QUOTE -4449)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))))) @@ -2155,7 +2155,7 @@ NIL (-556 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) ((-4452 . T) (-4453 . T)) -((-12 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2340) (|devaluate| |#2|)))))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -619) (QUOTE (-868))))) +((-12 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2339) (|devaluate| |#2|)))))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -619) (QUOTE (-868))))) (-557 R -1709) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL @@ -2382,12 +2382,12 @@ NIL NIL (-613 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4449 -2892 (-1809 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))) (-4447 . T) (-4446 . T)) +((-4449 -2892 (-1808 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))) (-4447 . T) (-4446 . T)) ((-2892 (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (-2892 (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|)))) (-614 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) ((-4452 . T) (-4453 . T)) -((-12 (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2340 |#1|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2340 |#1|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -2340) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2340 |#1|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| (-1168) (QUOTE (-856))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2340 |#1|)) (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2340 |#1|)) (LIST (QUOTE -619) (QUOTE (-868))))) +((-12 (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2339 |#1|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2339 |#1|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -2339) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2339 |#1|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| (-1168) (QUOTE (-856))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2339 |#1|)) (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2339 |#1|)) (LIST (QUOTE -619) (QUOTE (-868))))) (-615 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL @@ -2481,9 +2481,9 @@ NIL NIL NIL (-638) -((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) +((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) ((-4453 . T)) -((-12 (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2340 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2340 (-52))) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -2340) (QUOTE (-52))))))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2340 (-52))) (QUOTE (-1109))) (|HasCategory| (-52) (QUOTE (-1109)))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2340 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2340 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2340 (-52))) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -313) (QUOTE (-52))))) (|HasCategory| (-1168) (QUOTE (-856))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2340 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2340 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2340 (-52))) (QUOTE (-1109)))) +((-12 (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2339 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2339 (-52))) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -2339) (QUOTE (-52))))))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2339 (-52))) (QUOTE (-1109))) (|HasCategory| (-52) (QUOTE (-1109)))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2339 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2339 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2339 (-52))) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -313) (QUOTE (-52))))) (|HasCategory| (-1168) (QUOTE (-856))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2339 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2339 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2339 (-52))) (QUOTE (-1109)))) (-639 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL @@ -2494,7 +2494,7 @@ NIL NIL (-641 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4449 -2892 (-1809 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))) (-4447 . T) (-4446 . T)) +((-4449 -2892 (-1808 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))) (-4447 . T) (-4446 . T)) ((-2892 (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (-2892 (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|)))) (-642 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) @@ -2507,7 +2507,7 @@ NIL (-644 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-1795 (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-368)))) +((-1796 (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-368)))) (-645 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) ((-4449 . T)) @@ -2553,11 +2553,11 @@ NIL NIL NIL (-656 A S) -((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) +((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL ((|HasAttribute| |#1| (QUOTE -4453))) (-657 S) -((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) +((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL (-658 R -1709 L) @@ -2584,7 +2584,7 @@ NIL ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-664 A -1596) +(-664 A -1422) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) ((-4446 . T) (-4447 . T) (-4449 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-368)))) @@ -2796,7 +2796,7 @@ NIL ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-717 R |Mod| -2077 -2948 |exactQuo|) +(-717 R |Mod| -3733 -2483 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T)) NIL @@ -2812,7 +2812,7 @@ NIL ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) ((-4447 |has| |#1| (-174)) (-4446 |has| |#1| (-174)) (-4449 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) -(-721 R |Mod| -2077 -2948 |exactQuo|) +(-721 R |Mod| -3733 -2483 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4449 . T)) NIL @@ -3075,7 +3075,7 @@ NIL (-786 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) (((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T)) -((|HasCategory| |#1| (QUOTE (-916))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2892 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2892 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2892 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186))))) (-2892 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-1795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))))) (-2892 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-1795 (|HasCategory| |#1| (QUOTE (-551)))) (-1795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-1795 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-570))))) (-1795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-1795 (|HasCategory| |#1| (LIST (QUOTE -1001) (QUOTE (-570))))))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-2892 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146))))) +((|HasCategory| |#1| (QUOTE (-916))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2892 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2892 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2892 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186))))) (-2892 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-1796 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))))) (-2892 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-1796 (|HasCategory| |#1| (QUOTE (-551)))) (-1796 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-1796 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-570))))) (-1796 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-1796 (|HasCategory| |#1| (LIST (QUOTE -1001) (QUOTE (-570))))))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-2892 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146))))) (-787 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL @@ -3212,7 +3212,7 @@ NIL ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-821 -2549 S |f|) +(-821 -2550 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4446 |has| |#2| (-1058)) (-4447 |has| |#2| (-1058)) (-4449 |has| |#2| (-6 -4449)) ((-4454 "*") |has| |#2| (-174)) (-4452 . T)) ((-2892 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-2892 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-368))) (-2892 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2892 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-799))) (-2892 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854)))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-732))) (-2892 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (-2892 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2892 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2892 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2892 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-235))) (-2892 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| |#2| (QUOTE (-1109))) (-2892 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-235)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-373)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-799)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-854)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109))))) (-2892 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-2892 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-2892 (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasAttribute| |#2| (QUOTE -4449)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))))) @@ -3332,7 +3332,7 @@ NIL ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-851 -2549 S) +(-851 -2550 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL @@ -3368,11 +3368,11 @@ NIL ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) -(-860 R |sigma| -3226) +(-860 R |sigma| -3225) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) ((-4446 . T) (-4447 . T) (-4449 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-368)))) -(-861 |x| R |sigma| -3226) +(-861 |x| R |sigma| -3225) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) ((-4446 . T) (-4447 . T) (-4449 . T)) ((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-368)))) @@ -3507,7 +3507,7 @@ NIL (-894 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-1795 (|HasCategory| |#2| (QUOTE (-1058)))) (-1795 (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (-1795 (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186))))) +((-12 (-1796 (|HasCategory| |#2| (QUOTE (-1058)))) (-1796 (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (-1796 (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186))))) (-895 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL @@ -3937,7 +3937,7 @@ NIL ((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T)) NIL (-1002 |n| K) -((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) +((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL (-1003) @@ -4107,7 +4107,7 @@ NIL (-1044) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) ((-4452 . T) (-4453 . T)) -((-12 (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2340 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2340 (-52))) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (QUOTE (-1186))) (LIST (QUOTE |:|) (QUOTE -2340) (QUOTE (-52))))))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2340 (-52))) (QUOTE (-1109))) (|HasCategory| (-52) (QUOTE (-1109)))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2340 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2340 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2340 (-52))) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -313) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2340 (-52))) (QUOTE (-1109))) (|HasCategory| (-1186) (QUOTE (-856))) (|HasCategory| (-52) (QUOTE (-1109))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2340 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2340 (-52))) (LIST (QUOTE -619) (QUOTE (-868))))) +((-12 (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2339 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2339 (-52))) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (QUOTE (-1186))) (LIST (QUOTE |:|) (QUOTE -2339) (QUOTE (-52))))))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2339 (-52))) (QUOTE (-1109))) (|HasCategory| (-52) (QUOTE (-1109)))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2339 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2339 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2339 (-52))) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -313) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2339 (-52))) (QUOTE (-1109))) (|HasCategory| (-1186) (QUOTE (-856))) (|HasCategory| (-52) (QUOTE (-1109))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2339 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2339 (-52))) (LIST (QUOTE -619) (QUOTE (-868))))) (-1045) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL @@ -4219,7 +4219,7 @@ NIL (-1072) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) ((-4452 . T) (-4453 . T)) -((-12 (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2340 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2340 (-52))) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (QUOTE (-1186))) (LIST (QUOTE |:|) (QUOTE -2340) (QUOTE (-52))))))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2340 (-52))) (QUOTE (-1109))) (|HasCategory| (-52) (QUOTE (-1109)))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2340 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2340 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2340 (-52))) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -313) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2340 (-52))) (QUOTE (-1109))) (|HasCategory| (-1186) (QUOTE (-856))) (|HasCategory| (-52) (QUOTE (-1109))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2340 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2340 (-52))) (LIST (QUOTE -619) (QUOTE (-868))))) +((-12 (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2339 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2339 (-52))) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (QUOTE (-1186))) (LIST (QUOTE |:|) (QUOTE -2339) (QUOTE (-52))))))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2339 (-52))) (QUOTE (-1109))) (|HasCategory| (-52) (QUOTE (-1109)))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2339 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2339 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2339 (-52))) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -313) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2339 (-52))) (QUOTE (-1109))) (|HasCategory| (-1186) (QUOTE (-856))) (|HasCategory| (-52) (QUOTE (-1109))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2339 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 (-1186)) (|:| -2339 (-52))) (LIST (QUOTE -619) (QUOTE (-868))))) (-1073 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL @@ -4377,7 +4377,7 @@ NIL ((-4452 . T) (-4442 . T) (-4453 . T)) ((-2892 (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-1112 |Str| |Sym| |Int| |Flt| |Expr|) -((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,...,an), [i1,...,im])} returns \\spad{(a_i1,...,a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,...,an), i)} returns \\spad{ai}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) +((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL (-1113) @@ -4567,7 +4567,7 @@ NIL (-1159 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) ((-4453 . T)) -((-12 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2340) (|devaluate| |#2|)))))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-856))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2340 |#2|)) (QUOTE (-1109)))) +((-12 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2339) (|devaluate| |#2|)))))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-856))) (-2892 (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 |#1|) (|:| -2339 |#2|)) (QUOTE (-1109)))) (-1160) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL @@ -4607,7 +4607,7 @@ NIL (-1169 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) ((-4452 . T) (-4453 . T)) -((-12 (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2340 |#1|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2340 |#1|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -2340) (|devaluate| |#1|)))))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2340 |#1|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-1109)))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2340 |#1|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2340 |#1|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2340 |#1|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2340 |#1|)) (QUOTE (-1109))) (|HasCategory| (-1168) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2340 |#1|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2340 |#1|)) (LIST (QUOTE -619) (QUOTE (-868))))) +((-12 (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2339 |#1|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2339 |#1|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2106) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -2339) (|devaluate| |#1|)))))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2339 |#1|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-1109)))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2339 |#1|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2339 |#1|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2339 |#1|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2339 |#1|)) (QUOTE (-1109))) (|HasCategory| (-1168) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (-2892 (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2339 |#1|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2106 (-1168)) (|:| -2339 |#1|)) (LIST (QUOTE -619) (QUOTE (-868))))) (-1170 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b = sum(i+j=k,a)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL @@ -4638,8 +4638,8 @@ NIL NIL (-1177 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4454 "*") -2892 (-1809 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-826))) (|has| |#1| (-174)) (-1809 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-916)))) (-4445 -2892 (-1809 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-826))) (|has| |#1| (-562)) (-1809 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-916)))) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T)) -((-2892 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1161))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -313) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-2892 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2892 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2892 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|)))))) (-2892 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|))))) (|HasCategory| (-570) (QUOTE (-1121))) (-2892 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-368)))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-2892 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368))))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1161))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -313) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -3802) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (-2892 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -3170) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1755) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2892 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-562)))) (-2892 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2892 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-2892 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4454 "*") -2892 (-1808 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-826))) (|has| |#1| (-174)) (-1808 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-916)))) (-4445 -2892 (-1808 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-826))) (|has| |#1| (-562)) (-1808 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-916)))) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T)) +((-2892 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1161))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -313) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-2892 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2892 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2892 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|)))))) (-2892 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|))))) (|HasCategory| (-570) (QUOTE (-1121))) (-2892 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-368)))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-2892 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368))))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1161))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -313) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -3802) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (-2892 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2833) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1756) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2892 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-562)))) (-2892 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2892 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-2892 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-146))))) (-1178 R -1709) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL @@ -4663,11 +4663,11 @@ NIL (-1183 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) (((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-2892 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -3802) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2892 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -3170) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1755) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-2892 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -3802) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2892 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2833) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1756) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|))))))) (-1184 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4446 . T) (-4447 . T) (-4449 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|)))) (|HasCategory| (-777) (QUOTE (-1121))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasSignature| |#1| (LIST (QUOTE -3802) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasCategory| |#1| (QUOTE (-368))) (-2892 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -3170) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1755) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|)))) (|HasCategory| (-777) (QUOTE (-1121))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasSignature| |#1| (LIST (QUOTE -3802) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasCategory| |#1| (QUOTE (-368))) (-2892 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2833) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1756) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|))))))) (-1185) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) (((-4454 "*") |has| (-1262 |#2| |#3| |#4|) (-174)) (-4445 |has| (-1262 |#2| |#3| |#4|) (-562)) (-4446 . T) (-4447 . T) (-4449 . T)) @@ -4999,7 +4999,7 @@ NIL (-1267 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-966))) (|HasCategory| |#2| (QUOTE (-1212))) (|HasSignature| |#2| (LIST (QUOTE -1755) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3170) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1186))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368)))) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-966))) (|HasCategory| |#2| (QUOTE (-1212))) (|HasSignature| |#2| (LIST (QUOTE -1756) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2833) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1186))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368)))) (-1268 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) (((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4446 . T) (-4447 . T) (-4449 . T)) @@ -5007,7 +5007,7 @@ NIL (-1269 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4446 . T) (-4447 . T) (-4449 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|)))) (|HasCategory| (-777) (QUOTE (-1121))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasSignature| |#1| (LIST (QUOTE -3802) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasCategory| |#1| (QUOTE (-368))) (-2892 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -3170) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1755) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-2892 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|)))) (|HasCategory| (-777) (QUOTE (-1121))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasSignature| |#1| (LIST (QUOTE -3802) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasCategory| |#1| (QUOTE (-368))) (-2892 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2833) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1756) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|))))))) (-1270 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y=f(y,y',..,y)} such that \\spad{y(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL @@ -5172,4 +5172,4 @@ NIL NIL NIL NIL -((-3 NIL 2268326 2268331 2268336 2268341) (-2 NIL 2268306 2268311 2268316 2268321) (-1 NIL 2268286 2268291 2268296 2268301) (0 NIL 2268266 2268271 2268276 2268281) (-1306 "ZMOD.spad" 2268075 2268088 2268204 2268261) (-1305 "ZLINDEP.spad" 2267141 2267152 2268065 2268070) (-1304 "ZDSOLVE.spad" 2257086 2257108 2267131 2267136) (-1303 "YSTREAM.spad" 2256581 2256592 2257076 2257081) (-1302 "YDIAGRAM.spad" 2256215 2256224 2256571 2256576) (-1301 "XRPOLY.spad" 2255435 2255455 2256071 2256140) (-1300 "XPR.spad" 2253230 2253243 2255153 2255252) (-1299 "XPOLY.spad" 2252785 2252796 2253086 2253155) (-1298 "XPOLYC.spad" 2252104 2252120 2252711 2252780) (-1297 "XPBWPOLY.spad" 2250541 2250561 2251884 2251953) (-1296 "XF.spad" 2249004 2249019 2250443 2250536) (-1295 "XF.spad" 2247447 2247464 2248888 2248893) (-1294 "XFALG.spad" 2244495 2244511 2247373 2247442) (-1293 "XEXPPKG.spad" 2243746 2243772 2244485 2244490) (-1292 "XDPOLY.spad" 2243360 2243376 2243602 2243671) (-1291 "XALG.spad" 2243020 2243031 2243316 2243355) (-1290 "WUTSET.spad" 2238859 2238876 2242666 2242693) (-1289 "WP.spad" 2238058 2238102 2238717 2238784) (-1288 "WHILEAST.spad" 2237856 2237865 2238048 2238053) (-1287 "WHEREAST.spad" 2237527 2237536 2237846 2237851) (-1286 "WFFINTBS.spad" 2235190 2235212 2237517 2237522) (-1285 "WEIER.spad" 2233412 2233423 2235180 2235185) (-1284 "VSPACE.spad" 2233085 2233096 2233380 2233407) (-1283 "VSPACE.spad" 2232778 2232791 2233075 2233080) (-1282 "VOID.spad" 2232455 2232464 2232768 2232773) (-1281 "VIEW.spad" 2230135 2230144 2232445 2232450) (-1280 "VIEWDEF.spad" 2225336 2225345 2230125 2230130) (-1279 "VIEW3D.spad" 2209297 2209306 2225326 2225331) (-1278 "VIEW2D.spad" 2197188 2197197 2209287 2209292) (-1277 "VECTOR.spad" 2195862 2195873 2196113 2196140) (-1276 "VECTOR2.spad" 2194501 2194514 2195852 2195857) (-1275 "VECTCAT.spad" 2192405 2192416 2194469 2194496) (-1274 "VECTCAT.spad" 2190116 2190129 2192182 2192187) (-1273 "VARIABLE.spad" 2189896 2189911 2190106 2190111) (-1272 "UTYPE.spad" 2189540 2189549 2189886 2189891) (-1271 "UTSODETL.spad" 2188835 2188859 2189496 2189501) (-1270 "UTSODE.spad" 2187051 2187071 2188825 2188830) (-1269 "UTS.spad" 2181855 2181883 2185518 2185615) (-1268 "UTSCAT.spad" 2179334 2179350 2181753 2181850) (-1267 "UTSCAT.spad" 2176457 2176475 2178878 2178883) (-1266 "UTS2.spad" 2176052 2176087 2176447 2176452) (-1265 "URAGG.spad" 2170725 2170736 2176042 2176047) (-1264 "URAGG.spad" 2165362 2165375 2170681 2170686) (-1263 "UPXSSING.spad" 2163007 2163033 2164443 2164576) (-1262 "UPXS.spad" 2160161 2160189 2161139 2161288) (-1261 "UPXSCONS.spad" 2157920 2157940 2158293 2158442) (-1260 "UPXSCCA.spad" 2156491 2156511 2157766 2157915) (-1259 "UPXSCCA.spad" 2155204 2155226 2156481 2156486) (-1258 "UPXSCAT.spad" 2153793 2153809 2155050 2155199) (-1257 "UPXS2.spad" 2153336 2153389 2153783 2153788) (-1256 "UPSQFREE.spad" 2151750 2151764 2153326 2153331) (-1255 "UPSCAT.spad" 2149361 2149385 2151648 2151745) (-1254 "UPSCAT.spad" 2146678 2146704 2148967 2148972) (-1253 "UPOLYC.spad" 2141718 2141729 2146520 2146673) (-1252 "UPOLYC.spad" 2136650 2136663 2141454 2141459) (-1251 "UPOLYC2.spad" 2136121 2136140 2136640 2136645) (-1250 "UP.spad" 2133320 2133335 2133707 2133860) (-1249 "UPMP.spad" 2132220 2132233 2133310 2133315) (-1248 "UPDIVP.spad" 2131785 2131799 2132210 2132215) (-1247 "UPDECOMP.spad" 2130030 2130044 2131775 2131780) (-1246 "UPCDEN.spad" 2129239 2129255 2130020 2130025) (-1245 "UP2.spad" 2128603 2128624 2129229 2129234) (-1244 "UNISEG.spad" 2127956 2127967 2128522 2128527) (-1243 "UNISEG2.spad" 2127453 2127466 2127912 2127917) (-1242 "UNIFACT.spad" 2126556 2126568 2127443 2127448) (-1241 "ULS.spad" 2117114 2117142 2118201 2118630) (-1240 "ULSCONS.spad" 2109510 2109530 2109880 2110029) (-1239 "ULSCCAT.spad" 2107247 2107267 2109356 2109505) (-1238 "ULSCCAT.spad" 2105092 2105114 2107203 2107208) (-1237 "ULSCAT.spad" 2103324 2103340 2104938 2105087) (-1236 "ULS2.spad" 2102838 2102891 2103314 2103319) (-1235 "UINT8.spad" 2102715 2102724 2102828 2102833) (-1234 "UINT64.spad" 2102591 2102600 2102705 2102710) (-1233 "UINT32.spad" 2102467 2102476 2102581 2102586) (-1232 "UINT16.spad" 2102343 2102352 2102457 2102462) (-1231 "UFD.spad" 2101408 2101417 2102269 2102338) (-1230 "UFD.spad" 2100535 2100546 2101398 2101403) (-1229 "UDVO.spad" 2099416 2099425 2100525 2100530) (-1228 "UDPO.spad" 2096909 2096920 2099372 2099377) (-1227 "TYPE.spad" 2096841 2096850 2096899 2096904) (-1226 "TYPEAST.spad" 2096760 2096769 2096831 2096836) (-1225 "TWOFACT.spad" 2095412 2095427 2096750 2096755) (-1224 "TUPLE.spad" 2094898 2094909 2095311 2095316) (-1223 "TUBETOOL.spad" 2091765 2091774 2094888 2094893) (-1222 "TUBE.spad" 2090412 2090429 2091755 2091760) (-1221 "TS.spad" 2089011 2089027 2089977 2090074) (-1220 "TSETCAT.spad" 2076138 2076155 2088979 2089006) (-1219 "TSETCAT.spad" 2063251 2063270 2076094 2076099) (-1218 "TRMANIP.spad" 2057617 2057634 2062957 2062962) (-1217 "TRIMAT.spad" 2056580 2056605 2057607 2057612) (-1216 "TRIGMNIP.spad" 2055107 2055124 2056570 2056575) (-1215 "TRIGCAT.spad" 2054619 2054628 2055097 2055102) (-1214 "TRIGCAT.spad" 2054129 2054140 2054609 2054614) (-1213 "TREE.spad" 2052704 2052715 2053736 2053763) (-1212 "TRANFUN.spad" 2052543 2052552 2052694 2052699) (-1211 "TRANFUN.spad" 2052380 2052391 2052533 2052538) (-1210 "TOPSP.spad" 2052054 2052063 2052370 2052375) (-1209 "TOOLSIGN.spad" 2051717 2051728 2052044 2052049) (-1208 "TEXTFILE.spad" 2050278 2050287 2051707 2051712) (-1207 "TEX.spad" 2047424 2047433 2050268 2050273) (-1206 "TEX1.spad" 2046980 2046991 2047414 2047419) (-1205 "TEMUTL.spad" 2046535 2046544 2046970 2046975) (-1204 "TBCMPPK.spad" 2044628 2044651 2046525 2046530) (-1203 "TBAGG.spad" 2043678 2043701 2044608 2044623) (-1202 "TBAGG.spad" 2042736 2042761 2043668 2043673) (-1201 "TANEXP.spad" 2042144 2042155 2042726 2042731) (-1200 "TALGOP.spad" 2041868 2041879 2042134 2042139) (-1199 "TABLE.spad" 2040279 2040302 2040549 2040576) (-1198 "TABLEAU.spad" 2039760 2039771 2040269 2040274) (-1197 "TABLBUMP.spad" 2036563 2036574 2039750 2039755) (-1196 "SYSTEM.spad" 2035791 2035800 2036553 2036558) (-1195 "SYSSOLP.spad" 2033274 2033285 2035781 2035786) (-1194 "SYSPTR.spad" 2033173 2033182 2033264 2033269) (-1193 "SYSNNI.spad" 2032355 2032366 2033163 2033168) (-1192 "SYSINT.spad" 2031759 2031770 2032345 2032350) (-1191 "SYNTAX.spad" 2027965 2027974 2031749 2031754) (-1190 "SYMTAB.spad" 2026033 2026042 2027955 2027960) (-1189 "SYMS.spad" 2022056 2022065 2026023 2026028) (-1188 "SYMPOLY.spad" 2021063 2021074 2021145 2021272) (-1187 "SYMFUNC.spad" 2020564 2020575 2021053 2021058) (-1186 "SYMBOL.spad" 2018067 2018076 2020554 2020559) (-1185 "SWITCH.spad" 2014838 2014847 2018057 2018062) (-1184 "SUTS.spad" 2011743 2011771 2013305 2013402) (-1183 "SUPXS.spad" 2008884 2008912 2009875 2010024) (-1182 "SUP.spad" 2005697 2005708 2006470 2006623) (-1181 "SUPFRACF.spad" 2004802 2004820 2005687 2005692) (-1180 "SUP2.spad" 2004194 2004207 2004792 2004797) (-1179 "SUMRF.spad" 2003168 2003179 2004184 2004189) (-1178 "SUMFS.spad" 2002805 2002822 2003158 2003163) (-1177 "SULS.spad" 1993350 1993378 1994450 1994879) (-1176 "SUCHTAST.spad" 1993119 1993128 1993340 1993345) (-1175 "SUCH.spad" 1992801 1992816 1993109 1993114) (-1174 "SUBSPACE.spad" 1984916 1984931 1992791 1992796) (-1173 "SUBRESP.spad" 1984086 1984100 1984872 1984877) (-1172 "STTF.spad" 1980185 1980201 1984076 1984081) (-1171 "STTFNC.spad" 1976653 1976669 1980175 1980180) (-1170 "STTAYLOR.spad" 1969288 1969299 1976534 1976539) (-1169 "STRTBL.spad" 1967793 1967810 1967942 1967969) (-1168 "STRING.spad" 1967202 1967211 1967216 1967243) (-1167 "STRICAT.spad" 1966990 1966999 1967170 1967197) (-1166 "STREAM.spad" 1963908 1963919 1966515 1966530) (-1165 "STREAM3.spad" 1963481 1963496 1963898 1963903) (-1164 "STREAM2.spad" 1962609 1962622 1963471 1963476) (-1163 "STREAM1.spad" 1962315 1962326 1962599 1962604) (-1162 "STINPROD.spad" 1961251 1961267 1962305 1962310) (-1161 "STEP.spad" 1960452 1960461 1961241 1961246) (-1160 "STEPAST.spad" 1959686 1959695 1960442 1960447) (-1159 "STBL.spad" 1958212 1958240 1958379 1958394) (-1158 "STAGG.spad" 1957287 1957298 1958202 1958207) (-1157 "STAGG.spad" 1956360 1956373 1957277 1957282) (-1156 "STACK.spad" 1955717 1955728 1955967 1955994) (-1155 "SREGSET.spad" 1953421 1953438 1955363 1955390) (-1154 "SRDCMPK.spad" 1951982 1952002 1953411 1953416) (-1153 "SRAGG.spad" 1947125 1947134 1951950 1951977) (-1152 "SRAGG.spad" 1942288 1942299 1947115 1947120) (-1151 "SQMATRIX.spad" 1939904 1939922 1940820 1940907) (-1150 "SPLTREE.spad" 1934456 1934469 1939340 1939367) (-1149 "SPLNODE.spad" 1931044 1931057 1934446 1934451) (-1148 "SPFCAT.spad" 1929853 1929862 1931034 1931039) (-1147 "SPECOUT.spad" 1928405 1928414 1929843 1929848) (-1146 "SPADXPT.spad" 1920000 1920009 1928395 1928400) (-1145 "spad-parser.spad" 1919465 1919474 1919990 1919995) (-1144 "SPADAST.spad" 1919166 1919175 1919455 1919460) (-1143 "SPACEC.spad" 1903365 1903376 1919156 1919161) (-1142 "SPACE3.spad" 1903141 1903152 1903355 1903360) (-1141 "SORTPAK.spad" 1902690 1902703 1903097 1903102) (-1140 "SOLVETRA.spad" 1900453 1900464 1902680 1902685) (-1139 "SOLVESER.spad" 1898981 1898992 1900443 1900448) (-1138 "SOLVERAD.spad" 1895007 1895018 1898971 1898976) (-1137 "SOLVEFOR.spad" 1893469 1893487 1894997 1895002) (-1136 "SNTSCAT.spad" 1893069 1893086 1893437 1893464) (-1135 "SMTS.spad" 1891341 1891367 1892634 1892731) (-1134 "SMP.spad" 1888816 1888836 1889206 1889333) (-1133 "SMITH.spad" 1887661 1887686 1888806 1888811) (-1132 "SMATCAT.spad" 1885771 1885801 1887605 1887656) (-1131 "SMATCAT.spad" 1883813 1883845 1885649 1885654) (-1130 "SKAGG.spad" 1882776 1882787 1883781 1883808) (-1129 "SINT.spad" 1881716 1881725 1882642 1882771) (-1128 "SIMPAN.spad" 1881444 1881453 1881706 1881711) (-1127 "SIG.spad" 1880774 1880783 1881434 1881439) (-1126 "SIGNRF.spad" 1879892 1879903 1880764 1880769) (-1125 "SIGNEF.spad" 1879171 1879188 1879882 1879887) (-1124 "SIGAST.spad" 1878556 1878565 1879161 1879166) (-1123 "SHP.spad" 1876484 1876499 1878512 1878517) (-1122 "SHDP.spad" 1866195 1866222 1866704 1866835) (-1121 "SGROUP.spad" 1865803 1865812 1866185 1866190) (-1120 "SGROUP.spad" 1865409 1865420 1865793 1865798) (-1119 "SGCF.spad" 1858548 1858557 1865399 1865404) (-1118 "SFRTCAT.spad" 1857478 1857495 1858516 1858543) (-1117 "SFRGCD.spad" 1856541 1856561 1857468 1857473) (-1116 "SFQCMPK.spad" 1851178 1851198 1856531 1856536) (-1115 "SFORT.spad" 1850617 1850631 1851168 1851173) (-1114 "SEXOF.spad" 1850460 1850500 1850607 1850612) (-1113 "SEX.spad" 1850352 1850361 1850450 1850455) (-1112 "SEXCAT.spad" 1847953 1847993 1850342 1850347) (-1111 "SET.spad" 1846277 1846288 1847374 1847413) (-1110 "SETMN.spad" 1844727 1844744 1846267 1846272) (-1109 "SETCAT.spad" 1844049 1844058 1844717 1844722) (-1108 "SETCAT.spad" 1843369 1843380 1844039 1844044) (-1107 "SETAGG.spad" 1839918 1839929 1843349 1843364) (-1106 "SETAGG.spad" 1836475 1836488 1839908 1839913) (-1105 "SEQAST.spad" 1836178 1836187 1836465 1836470) (-1104 "SEGXCAT.spad" 1835334 1835347 1836168 1836173) (-1103 "SEG.spad" 1835147 1835158 1835253 1835258) (-1102 "SEGCAT.spad" 1834072 1834083 1835137 1835142) (-1101 "SEGBIND.spad" 1833830 1833841 1834019 1834024) (-1100 "SEGBIND2.spad" 1833528 1833541 1833820 1833825) (-1099 "SEGAST.spad" 1833242 1833251 1833518 1833523) (-1098 "SEG2.spad" 1832677 1832690 1833198 1833203) (-1097 "SDVAR.spad" 1831953 1831964 1832667 1832672) (-1096 "SDPOL.spad" 1829379 1829390 1829670 1829797) (-1095 "SCPKG.spad" 1827468 1827479 1829369 1829374) (-1094 "SCOPE.spad" 1826621 1826630 1827458 1827463) (-1093 "SCACHE.spad" 1825317 1825328 1826611 1826616) (-1092 "SASTCAT.spad" 1825226 1825235 1825307 1825312) (-1091 "SAOS.spad" 1825098 1825107 1825216 1825221) (-1090 "SAERFFC.spad" 1824811 1824831 1825088 1825093) (-1089 "SAE.spad" 1822986 1823002 1823597 1823732) (-1088 "SAEFACT.spad" 1822687 1822707 1822976 1822981) (-1087 "RURPK.spad" 1820346 1820362 1822677 1822682) (-1086 "RULESET.spad" 1819799 1819823 1820336 1820341) (-1085 "RULE.spad" 1818039 1818063 1819789 1819794) (-1084 "RULECOLD.spad" 1817891 1817904 1818029 1818034) (-1083 "RTVALUE.spad" 1817626 1817635 1817881 1817886) (-1082 "RSTRCAST.spad" 1817343 1817352 1817616 1817621) (-1081 "RSETGCD.spad" 1813721 1813741 1817333 1817338) (-1080 "RSETCAT.spad" 1803657 1803674 1813689 1813716) (-1079 "RSETCAT.spad" 1793613 1793632 1803647 1803652) (-1078 "RSDCMPK.spad" 1792065 1792085 1793603 1793608) (-1077 "RRCC.spad" 1790449 1790479 1792055 1792060) (-1076 "RRCC.spad" 1788831 1788863 1790439 1790444) (-1075 "RPTAST.spad" 1788533 1788542 1788821 1788826) (-1074 "RPOLCAT.spad" 1767893 1767908 1788401 1788528) (-1073 "RPOLCAT.spad" 1746966 1746983 1767476 1767481) (-1072 "ROUTINE.spad" 1742849 1742858 1745613 1745640) (-1071 "ROMAN.spad" 1742177 1742186 1742715 1742844) (-1070 "ROIRC.spad" 1741257 1741289 1742167 1742172) (-1069 "RNS.spad" 1740160 1740169 1741159 1741252) (-1068 "RNS.spad" 1739149 1739160 1740150 1740155) (-1067 "RNG.spad" 1738884 1738893 1739139 1739144) (-1066 "RNGBIND.spad" 1738044 1738058 1738839 1738844) (-1065 "RMODULE.spad" 1737809 1737820 1738034 1738039) (-1064 "RMCAT2.spad" 1737229 1737286 1737799 1737804) (-1063 "RMATRIX.spad" 1736053 1736072 1736396 1736435) (-1062 "RMATCAT.spad" 1731632 1731663 1736009 1736048) (-1061 "RMATCAT.spad" 1727101 1727134 1731480 1731485) (-1060 "RLINSET.spad" 1726495 1726506 1727091 1727096) (-1059 "RINTERP.spad" 1726383 1726403 1726485 1726490) (-1058 "RING.spad" 1725853 1725862 1726363 1726378) (-1057 "RING.spad" 1725331 1725342 1725843 1725848) (-1056 "RIDIST.spad" 1724723 1724732 1725321 1725326) (-1055 "RGCHAIN.spad" 1723306 1723322 1724208 1724235) (-1054 "RGBCSPC.spad" 1723087 1723099 1723296 1723301) (-1053 "RGBCMDL.spad" 1722617 1722629 1723077 1723082) (-1052 "RF.spad" 1720259 1720270 1722607 1722612) (-1051 "RFFACTOR.spad" 1719721 1719732 1720249 1720254) (-1050 "RFFACT.spad" 1719456 1719468 1719711 1719716) (-1049 "RFDIST.spad" 1718452 1718461 1719446 1719451) (-1048 "RETSOL.spad" 1717871 1717884 1718442 1718447) (-1047 "RETRACT.spad" 1717299 1717310 1717861 1717866) (-1046 "RETRACT.spad" 1716725 1716738 1717289 1717294) (-1045 "RETAST.spad" 1716537 1716546 1716715 1716720) (-1044 "RESULT.spad" 1714597 1714606 1715184 1715211) (-1043 "RESRING.spad" 1713944 1713991 1714535 1714592) (-1042 "RESLATC.spad" 1713268 1713279 1713934 1713939) (-1041 "REPSQ.spad" 1712999 1713010 1713258 1713263) (-1040 "REP.spad" 1710553 1710562 1712989 1712994) (-1039 "REPDB.spad" 1710260 1710271 1710543 1710548) (-1038 "REP2.spad" 1699918 1699929 1710102 1710107) (-1037 "REP1.spad" 1694114 1694125 1699868 1699873) (-1036 "REGSET.spad" 1691911 1691928 1693760 1693787) (-1035 "REF.spad" 1691246 1691257 1691866 1691871) (-1034 "REDORDER.spad" 1690452 1690469 1691236 1691241) (-1033 "RECLOS.spad" 1689235 1689255 1689939 1690032) (-1032 "REALSOLV.spad" 1688375 1688384 1689225 1689230) (-1031 "REAL.spad" 1688247 1688256 1688365 1688370) (-1030 "REAL0Q.spad" 1685545 1685560 1688237 1688242) (-1029 "REAL0.spad" 1682389 1682404 1685535 1685540) (-1028 "RDUCEAST.spad" 1682110 1682119 1682379 1682384) (-1027 "RDIV.spad" 1681765 1681790 1682100 1682105) (-1026 "RDIST.spad" 1681332 1681343 1681755 1681760) (-1025 "RDETRS.spad" 1680196 1680214 1681322 1681327) (-1024 "RDETR.spad" 1678335 1678353 1680186 1680191) (-1023 "RDEEFS.spad" 1677434 1677451 1678325 1678330) (-1022 "RDEEF.spad" 1676444 1676461 1677424 1677429) (-1021 "RCFIELD.spad" 1673630 1673639 1676346 1676439) (-1020 "RCFIELD.spad" 1670902 1670913 1673620 1673625) (-1019 "RCAGG.spad" 1668830 1668841 1670892 1670897) (-1018 "RCAGG.spad" 1666685 1666698 1668749 1668754) (-1017 "RATRET.spad" 1666045 1666056 1666675 1666680) (-1016 "RATFACT.spad" 1665737 1665749 1666035 1666040) (-1015 "RANDSRC.spad" 1665056 1665065 1665727 1665732) (-1014 "RADUTIL.spad" 1664812 1664821 1665046 1665051) (-1013 "RADIX.spad" 1661733 1661747 1663279 1663372) (-1012 "RADFF.spad" 1660146 1660183 1660265 1660421) (-1011 "RADCAT.spad" 1659741 1659750 1660136 1660141) (-1010 "RADCAT.spad" 1659334 1659345 1659731 1659736) (-1009 "QUEUE.spad" 1658682 1658693 1658941 1658968) (-1008 "QUAT.spad" 1657263 1657274 1657606 1657671) (-1007 "QUATCT2.spad" 1656883 1656902 1657253 1657258) (-1006 "QUATCAT.spad" 1655053 1655064 1656813 1656878) (-1005 "QUATCAT.spad" 1652974 1652987 1654736 1654741) (-1004 "QUAGG.spad" 1651801 1651812 1652942 1652969) (-1003 "QQUTAST.spad" 1651569 1651578 1651791 1651796) (-1002 "QFORM.spad" 1651033 1651048 1651559 1651564) (-1001 "QFCAT.spad" 1649735 1649746 1650935 1651028) (-1000 "QFCAT.spad" 1648028 1648041 1649230 1649235) (-999 "QFCAT2.spad" 1647721 1647737 1648018 1648023) (-998 "QEQUAT.spad" 1647280 1647288 1647711 1647716) (-997 "QCMPACK.spad" 1642027 1642046 1647270 1647275) (-996 "QALGSET.spad" 1638106 1638138 1641941 1641946) (-995 "QALGSET2.spad" 1636102 1636120 1638096 1638101) (-994 "PWFFINTB.spad" 1633518 1633539 1636092 1636097) (-993 "PUSHVAR.spad" 1632857 1632876 1633508 1633513) (-992 "PTRANFN.spad" 1628985 1628995 1632847 1632852) (-991 "PTPACK.spad" 1626073 1626083 1628975 1628980) (-990 "PTFUNC2.spad" 1625896 1625910 1626063 1626068) (-989 "PTCAT.spad" 1625151 1625161 1625864 1625891) (-988 "PSQFR.spad" 1624458 1624482 1625141 1625146) (-987 "PSEUDLIN.spad" 1623344 1623354 1624448 1624453) (-986 "PSETPK.spad" 1608777 1608793 1623222 1623227) (-985 "PSETCAT.spad" 1602697 1602720 1608757 1608772) (-984 "PSETCAT.spad" 1596591 1596616 1602653 1602658) (-983 "PSCURVE.spad" 1595574 1595582 1596581 1596586) (-982 "PSCAT.spad" 1594357 1594386 1595472 1595569) (-981 "PSCAT.spad" 1593230 1593261 1594347 1594352) (-980 "PRTITION.spad" 1591928 1591936 1593220 1593225) (-979 "PRTDAST.spad" 1591647 1591655 1591918 1591923) (-978 "PRS.spad" 1581209 1581226 1591603 1591608) (-977 "PRQAGG.spad" 1580644 1580654 1581177 1581204) (-976 "PROPLOG.spad" 1580216 1580224 1580634 1580639) (-975 "PROPFUN2.spad" 1579839 1579852 1580206 1580211) (-974 "PROPFUN1.spad" 1579237 1579248 1579829 1579834) (-973 "PROPFRML.spad" 1577805 1577816 1579227 1579232) (-972 "PROPERTY.spad" 1577293 1577301 1577795 1577800) (-971 "PRODUCT.spad" 1574975 1574987 1575259 1575314) (-970 "PR.spad" 1573367 1573379 1574066 1574193) (-969 "PRINT.spad" 1573119 1573127 1573357 1573362) (-968 "PRIMES.spad" 1571372 1571382 1573109 1573114) (-967 "PRIMELT.spad" 1569453 1569467 1571362 1571367) (-966 "PRIMCAT.spad" 1569080 1569088 1569443 1569448) (-965 "PRIMARR.spad" 1568085 1568095 1568263 1568290) (-964 "PRIMARR2.spad" 1566852 1566864 1568075 1568080) (-963 "PREASSOC.spad" 1566234 1566246 1566842 1566847) (-962 "PPCURVE.spad" 1565371 1565379 1566224 1566229) (-961 "PORTNUM.spad" 1565146 1565154 1565361 1565366) (-960 "POLYROOT.spad" 1563995 1564017 1565102 1565107) (-959 "POLY.spad" 1561330 1561340 1561845 1561972) (-958 "POLYLIFT.spad" 1560595 1560618 1561320 1561325) (-957 "POLYCATQ.spad" 1558713 1558735 1560585 1560590) (-956 "POLYCAT.spad" 1552183 1552204 1558581 1558708) (-955 "POLYCAT.spad" 1544991 1545014 1551391 1551396) (-954 "POLY2UP.spad" 1544443 1544457 1544981 1544986) (-953 "POLY2.spad" 1544040 1544052 1544433 1544438) (-952 "POLUTIL.spad" 1542981 1543010 1543996 1544001) (-951 "POLTOPOL.spad" 1541729 1541744 1542971 1542976) (-950 "POINT.spad" 1540567 1540577 1540654 1540681) (-949 "PNTHEORY.spad" 1537269 1537277 1540557 1540562) (-948 "PMTOOLS.spad" 1536044 1536058 1537259 1537264) (-947 "PMSYM.spad" 1535593 1535603 1536034 1536039) (-946 "PMQFCAT.spad" 1535184 1535198 1535583 1535588) (-945 "PMPRED.spad" 1534663 1534677 1535174 1535179) (-944 "PMPREDFS.spad" 1534117 1534139 1534653 1534658) (-943 "PMPLCAT.spad" 1533197 1533215 1534049 1534054) (-942 "PMLSAGG.spad" 1532782 1532796 1533187 1533192) (-941 "PMKERNEL.spad" 1532361 1532373 1532772 1532777) (-940 "PMINS.spad" 1531941 1531951 1532351 1532356) (-939 "PMFS.spad" 1531518 1531536 1531931 1531936) (-938 "PMDOWN.spad" 1530808 1530822 1531508 1531513) (-937 "PMASS.spad" 1529818 1529826 1530798 1530803) (-936 "PMASSFS.spad" 1528785 1528801 1529808 1529813) (-935 "PLOTTOOL.spad" 1528565 1528573 1528775 1528780) (-934 "PLOT.spad" 1523488 1523496 1528555 1528560) (-933 "PLOT3D.spad" 1519952 1519960 1523478 1523483) (-932 "PLOT1.spad" 1519109 1519119 1519942 1519947) (-931 "PLEQN.spad" 1506399 1506426 1519099 1519104) (-930 "PINTERP.spad" 1506021 1506040 1506389 1506394) (-929 "PINTERPA.spad" 1505805 1505821 1506011 1506016) (-928 "PI.spad" 1505414 1505422 1505779 1505800) (-927 "PID.spad" 1504384 1504392 1505340 1505409) (-926 "PICOERCE.spad" 1504041 1504051 1504374 1504379) (-925 "PGROEB.spad" 1502642 1502656 1504031 1504036) (-924 "PGE.spad" 1494259 1494267 1502632 1502637) (-923 "PGCD.spad" 1493149 1493166 1494249 1494254) (-922 "PFRPAC.spad" 1492298 1492308 1493139 1493144) (-921 "PFR.spad" 1488961 1488971 1492200 1492293) (-920 "PFOTOOLS.spad" 1488219 1488235 1488951 1488956) (-919 "PFOQ.spad" 1487589 1487607 1488209 1488214) (-918 "PFO.spad" 1487008 1487035 1487579 1487584) (-917 "PF.spad" 1486582 1486594 1486813 1486906) (-916 "PFECAT.spad" 1484264 1484272 1486508 1486577) (-915 "PFECAT.spad" 1481974 1481984 1484220 1484225) (-914 "PFBRU.spad" 1479862 1479874 1481964 1481969) (-913 "PFBR.spad" 1477422 1477445 1479852 1479857) (-912 "PERM.spad" 1473107 1473117 1477252 1477267) (-911 "PERMGRP.spad" 1467869 1467879 1473097 1473102) (-910 "PERMCAT.spad" 1466427 1466437 1467849 1467864) (-909 "PERMAN.spad" 1464959 1464973 1466417 1466422) (-908 "PENDTREE.spad" 1464300 1464310 1464588 1464593) (-907 "PDRING.spad" 1462851 1462861 1464280 1464295) (-906 "PDRING.spad" 1461410 1461422 1462841 1462846) (-905 "PDEPROB.spad" 1460425 1460433 1461400 1461405) (-904 "PDEPACK.spad" 1454465 1454473 1460415 1460420) (-903 "PDECOMP.spad" 1453935 1453952 1454455 1454460) (-902 "PDECAT.spad" 1452291 1452299 1453925 1453930) (-901 "PCOMP.spad" 1452144 1452157 1452281 1452286) (-900 "PBWLB.spad" 1450732 1450749 1452134 1452139) (-899 "PATTERN.spad" 1445271 1445281 1450722 1450727) (-898 "PATTERN2.spad" 1445009 1445021 1445261 1445266) (-897 "PATTERN1.spad" 1443345 1443361 1444999 1445004) (-896 "PATRES.spad" 1440920 1440932 1443335 1443340) (-895 "PATRES2.spad" 1440592 1440606 1440910 1440915) (-894 "PATMATCH.spad" 1438789 1438820 1440300 1440305) (-893 "PATMAB.spad" 1438218 1438228 1438779 1438784) (-892 "PATLRES.spad" 1437304 1437318 1438208 1438213) (-891 "PATAB.spad" 1437068 1437078 1437294 1437299) (-890 "PARTPERM.spad" 1435076 1435084 1437058 1437063) (-889 "PARSURF.spad" 1434510 1434538 1435066 1435071) (-888 "PARSU2.spad" 1434307 1434323 1434500 1434505) (-887 "script-parser.spad" 1433827 1433835 1434297 1434302) (-886 "PARSCURV.spad" 1433261 1433289 1433817 1433822) (-885 "PARSC2.spad" 1433052 1433068 1433251 1433256) (-884 "PARPCURV.spad" 1432514 1432542 1433042 1433047) (-883 "PARPC2.spad" 1432305 1432321 1432504 1432509) (-882 "PARAMAST.spad" 1431433 1431441 1432295 1432300) (-881 "PAN2EXPR.spad" 1430845 1430853 1431423 1431428) (-880 "PALETTE.spad" 1429815 1429823 1430835 1430840) (-879 "PAIR.spad" 1428802 1428815 1429403 1429408) (-878 "PADICRC.spad" 1426136 1426154 1427307 1427400) (-877 "PADICRAT.spad" 1424151 1424163 1424372 1424465) (-876 "PADIC.spad" 1423846 1423858 1424077 1424146) (-875 "PADICCT.spad" 1422395 1422407 1423772 1423841) (-874 "PADEPAC.spad" 1421084 1421103 1422385 1422390) (-873 "PADE.spad" 1419836 1419852 1421074 1421079) (-872 "OWP.spad" 1419076 1419106 1419694 1419761) (-871 "OVERSET.spad" 1418649 1418657 1419066 1419071) (-870 "OVAR.spad" 1418430 1418453 1418639 1418644) (-869 "OUT.spad" 1417516 1417524 1418420 1418425) (-868 "OUTFORM.spad" 1406908 1406916 1417506 1417511) (-867 "OUTBFILE.spad" 1406326 1406334 1406898 1406903) (-866 "OUTBCON.spad" 1405332 1405340 1406316 1406321) (-865 "OUTBCON.spad" 1404336 1404346 1405322 1405327) (-864 "OSI.spad" 1403811 1403819 1404326 1404331) (-863 "OSGROUP.spad" 1403729 1403737 1403801 1403806) (-862 "ORTHPOL.spad" 1402214 1402224 1403646 1403651) (-861 "OREUP.spad" 1401667 1401695 1401894 1401933) (-860 "ORESUP.spad" 1400968 1400992 1401347 1401386) (-859 "OREPCTO.spad" 1398825 1398837 1400888 1400893) (-858 "OREPCAT.spad" 1392972 1392982 1398781 1398820) (-857 "OREPCAT.spad" 1387009 1387021 1392820 1392825) (-856 "ORDSET.spad" 1386181 1386189 1386999 1387004) (-855 "ORDSET.spad" 1385351 1385361 1386171 1386176) (-854 "ORDRING.spad" 1384741 1384749 1385331 1385346) (-853 "ORDRING.spad" 1384139 1384149 1384731 1384736) (-852 "ORDMON.spad" 1383994 1384002 1384129 1384134) (-851 "ORDFUNS.spad" 1383126 1383142 1383984 1383989) (-850 "ORDFIN.spad" 1382946 1382954 1383116 1383121) (-849 "ORDCOMP.spad" 1381411 1381421 1382493 1382522) (-848 "ORDCOMP2.spad" 1380704 1380716 1381401 1381406) (-847 "OPTPROB.spad" 1379342 1379350 1380694 1380699) (-846 "OPTPACK.spad" 1371751 1371759 1379332 1379337) (-845 "OPTCAT.spad" 1369430 1369438 1371741 1371746) (-844 "OPSIG.spad" 1369084 1369092 1369420 1369425) (-843 "OPQUERY.spad" 1368633 1368641 1369074 1369079) (-842 "OP.spad" 1368375 1368385 1368455 1368522) (-841 "OPERCAT.spad" 1367841 1367851 1368365 1368370) (-840 "OPERCAT.spad" 1367305 1367317 1367831 1367836) (-839 "ONECOMP.spad" 1366050 1366060 1366852 1366881) (-838 "ONECOMP2.spad" 1365474 1365486 1366040 1366045) (-837 "OMSERVER.spad" 1364480 1364488 1365464 1365469) (-836 "OMSAGG.spad" 1364268 1364278 1364436 1364475) (-835 "OMPKG.spad" 1362884 1362892 1364258 1364263) (-834 "OM.spad" 1361857 1361865 1362874 1362879) (-833 "OMLO.spad" 1361282 1361294 1361743 1361782) (-832 "OMEXPR.spad" 1361116 1361126 1361272 1361277) (-831 "OMERR.spad" 1360661 1360669 1361106 1361111) (-830 "OMERRK.spad" 1359695 1359703 1360651 1360656) (-829 "OMENC.spad" 1359039 1359047 1359685 1359690) (-828 "OMDEV.spad" 1353348 1353356 1359029 1359034) (-827 "OMCONN.spad" 1352757 1352765 1353338 1353343) (-826 "OINTDOM.spad" 1352520 1352528 1352683 1352752) (-825 "OFMONOID.spad" 1350643 1350653 1352476 1352481) (-824 "ODVAR.spad" 1349904 1349914 1350633 1350638) (-823 "ODR.spad" 1349548 1349574 1349716 1349865) (-822 "ODPOL.spad" 1346930 1346940 1347270 1347397) (-821 "ODP.spad" 1336777 1336797 1337150 1337281) (-820 "ODETOOLS.spad" 1335426 1335445 1336767 1336772) (-819 "ODESYS.spad" 1333120 1333137 1335416 1335421) (-818 "ODERTRIC.spad" 1329129 1329146 1333077 1333082) (-817 "ODERED.spad" 1328528 1328552 1329119 1329124) (-816 "ODERAT.spad" 1326143 1326160 1328518 1328523) (-815 "ODEPRRIC.spad" 1323180 1323202 1326133 1326138) (-814 "ODEPROB.spad" 1322437 1322445 1323170 1323175) (-813 "ODEPRIM.spad" 1319771 1319793 1322427 1322432) (-812 "ODEPAL.spad" 1319157 1319181 1319761 1319766) (-811 "ODEPACK.spad" 1305823 1305831 1319147 1319152) (-810 "ODEINT.spad" 1305258 1305274 1305813 1305818) (-809 "ODEIFTBL.spad" 1302653 1302661 1305248 1305253) (-808 "ODEEF.spad" 1298144 1298160 1302643 1302648) (-807 "ODECONST.spad" 1297681 1297699 1298134 1298139) (-806 "ODECAT.spad" 1296279 1296287 1297671 1297676) (-805 "OCT.spad" 1294415 1294425 1295129 1295168) (-804 "OCTCT2.spad" 1294061 1294082 1294405 1294410) (-803 "OC.spad" 1291857 1291867 1294017 1294056) (-802 "OC.spad" 1289378 1289390 1291540 1291545) (-801 "OCAMON.spad" 1289226 1289234 1289368 1289373) (-800 "OASGP.spad" 1289041 1289049 1289216 1289221) (-799 "OAMONS.spad" 1288563 1288571 1289031 1289036) (-798 "OAMON.spad" 1288424 1288432 1288553 1288558) (-797 "OAGROUP.spad" 1288286 1288294 1288414 1288419) (-796 "NUMTUBE.spad" 1287877 1287893 1288276 1288281) (-795 "NUMQUAD.spad" 1275853 1275861 1287867 1287872) (-794 "NUMODE.spad" 1267207 1267215 1275843 1275848) (-793 "NUMINT.spad" 1264773 1264781 1267197 1267202) (-792 "NUMFMT.spad" 1263613 1263621 1264763 1264768) (-791 "NUMERIC.spad" 1255727 1255737 1263418 1263423) (-790 "NTSCAT.spad" 1254235 1254251 1255695 1255722) (-789 "NTPOLFN.spad" 1253786 1253796 1254152 1254157) (-788 "NSUP.spad" 1246832 1246842 1251372 1251525) (-787 "NSUP2.spad" 1246224 1246236 1246822 1246827) (-786 "NSMP.spad" 1242454 1242473 1242762 1242889) (-785 "NREP.spad" 1240832 1240846 1242444 1242449) (-784 "NPCOEF.spad" 1240078 1240098 1240822 1240827) (-783 "NORMRETR.spad" 1239676 1239715 1240068 1240073) (-782 "NORMPK.spad" 1237578 1237597 1239666 1239671) (-781 "NORMMA.spad" 1237266 1237292 1237568 1237573) (-780 "NONE.spad" 1237007 1237015 1237256 1237261) (-779 "NONE1.spad" 1236683 1236693 1236997 1237002) (-778 "NODE1.spad" 1236170 1236186 1236673 1236678) (-777 "NNI.spad" 1235065 1235073 1236144 1236165) (-776 "NLINSOL.spad" 1233691 1233701 1235055 1235060) (-775 "NIPROB.spad" 1232232 1232240 1233681 1233686) (-774 "NFINTBAS.spad" 1229792 1229809 1232222 1232227) (-773 "NETCLT.spad" 1229766 1229777 1229782 1229787) (-772 "NCODIV.spad" 1227982 1227998 1229756 1229761) (-771 "NCNTFRAC.spad" 1227624 1227638 1227972 1227977) (-770 "NCEP.spad" 1225790 1225804 1227614 1227619) (-769 "NASRING.spad" 1225386 1225394 1225780 1225785) (-768 "NASRING.spad" 1224980 1224990 1225376 1225381) (-767 "NARNG.spad" 1224332 1224340 1224970 1224975) (-766 "NARNG.spad" 1223682 1223692 1224322 1224327) (-765 "NAGSP.spad" 1222759 1222767 1223672 1223677) (-764 "NAGS.spad" 1212420 1212428 1222749 1222754) (-763 "NAGF07.spad" 1210851 1210859 1212410 1212415) (-762 "NAGF04.spad" 1205253 1205261 1210841 1210846) (-761 "NAGF02.spad" 1199322 1199330 1205243 1205248) (-760 "NAGF01.spad" 1195083 1195091 1199312 1199317) (-759 "NAGE04.spad" 1188783 1188791 1195073 1195078) (-758 "NAGE02.spad" 1179443 1179451 1188773 1188778) (-757 "NAGE01.spad" 1175445 1175453 1179433 1179438) (-756 "NAGD03.spad" 1173449 1173457 1175435 1175440) (-755 "NAGD02.spad" 1166196 1166204 1173439 1173444) (-754 "NAGD01.spad" 1160489 1160497 1166186 1166191) (-753 "NAGC06.spad" 1156364 1156372 1160479 1160484) (-752 "NAGC05.spad" 1154865 1154873 1156354 1156359) (-751 "NAGC02.spad" 1154132 1154140 1154855 1154860) (-750 "NAALG.spad" 1153673 1153683 1154100 1154127) (-749 "NAALG.spad" 1153234 1153246 1153663 1153668) (-748 "MULTSQFR.spad" 1150192 1150209 1153224 1153229) (-747 "MULTFACT.spad" 1149575 1149592 1150182 1150187) (-746 "MTSCAT.spad" 1147669 1147690 1149473 1149570) (-745 "MTHING.spad" 1147328 1147338 1147659 1147664) (-744 "MSYSCMD.spad" 1146762 1146770 1147318 1147323) (-743 "MSET.spad" 1144720 1144730 1146468 1146507) (-742 "MSETAGG.spad" 1144565 1144575 1144688 1144715) (-741 "MRING.spad" 1141542 1141554 1144273 1144340) (-740 "MRF2.spad" 1141112 1141126 1141532 1141537) (-739 "MRATFAC.spad" 1140658 1140675 1141102 1141107) (-738 "MPRFF.spad" 1138698 1138717 1140648 1140653) (-737 "MPOLY.spad" 1136169 1136184 1136528 1136655) (-736 "MPCPF.spad" 1135433 1135452 1136159 1136164) (-735 "MPC3.spad" 1135250 1135290 1135423 1135428) (-734 "MPC2.spad" 1134896 1134929 1135240 1135245) (-733 "MONOTOOL.spad" 1133247 1133264 1134886 1134891) (-732 "MONOID.spad" 1132566 1132574 1133237 1133242) (-731 "MONOID.spad" 1131883 1131893 1132556 1132561) (-730 "MONOGEN.spad" 1130631 1130644 1131743 1131878) (-729 "MONOGEN.spad" 1129401 1129416 1130515 1130520) (-728 "MONADWU.spad" 1127431 1127439 1129391 1129396) (-727 "MONADWU.spad" 1125459 1125469 1127421 1127426) (-726 "MONAD.spad" 1124619 1124627 1125449 1125454) (-725 "MONAD.spad" 1123777 1123787 1124609 1124614) (-724 "MOEBIUS.spad" 1122513 1122527 1123757 1123772) (-723 "MODULE.spad" 1122383 1122393 1122481 1122508) (-722 "MODULE.spad" 1122273 1122285 1122373 1122378) (-721 "MODRING.spad" 1121608 1121647 1122253 1122268) (-720 "MODOP.spad" 1120273 1120285 1121430 1121497) (-719 "MODMONOM.spad" 1120004 1120022 1120263 1120268) (-718 "MODMON.spad" 1116799 1116815 1117518 1117671) (-717 "MODFIELD.spad" 1116161 1116200 1116701 1116794) (-716 "MMLFORM.spad" 1115021 1115029 1116151 1116156) (-715 "MMAP.spad" 1114763 1114797 1115011 1115016) (-714 "MLO.spad" 1113222 1113232 1114719 1114758) (-713 "MLIFT.spad" 1111834 1111851 1113212 1113217) (-712 "MKUCFUNC.spad" 1111369 1111387 1111824 1111829) (-711 "MKRECORD.spad" 1110973 1110986 1111359 1111364) (-710 "MKFUNC.spad" 1110380 1110390 1110963 1110968) (-709 "MKFLCFN.spad" 1109348 1109358 1110370 1110375) (-708 "MKBCFUNC.spad" 1108843 1108861 1109338 1109343) (-707 "MINT.spad" 1108282 1108290 1108745 1108838) (-706 "MHROWRED.spad" 1106793 1106803 1108272 1108277) (-705 "MFLOAT.spad" 1105313 1105321 1106683 1106788) (-704 "MFINFACT.spad" 1104713 1104735 1105303 1105308) (-703 "MESH.spad" 1102495 1102503 1104703 1104708) (-702 "MDDFACT.spad" 1100706 1100716 1102485 1102490) (-701 "MDAGG.spad" 1099997 1100007 1100686 1100701) (-700 "MCMPLX.spad" 1096008 1096016 1096622 1096823) (-699 "MCDEN.spad" 1095218 1095230 1095998 1096003) (-698 "MCALCFN.spad" 1092340 1092366 1095208 1095213) (-697 "MAYBE.spad" 1091624 1091635 1092330 1092335) (-696 "MATSTOR.spad" 1088932 1088942 1091614 1091619) (-695 "MATRIX.spad" 1087636 1087646 1088120 1088147) (-694 "MATLIN.spad" 1084980 1085004 1087520 1087525) (-693 "MATCAT.spad" 1076709 1076731 1084948 1084975) (-692 "MATCAT.spad" 1068310 1068334 1076551 1076556) (-691 "MATCAT2.spad" 1067592 1067640 1068300 1068305) (-690 "MAPPKG3.spad" 1066507 1066521 1067582 1067587) (-689 "MAPPKG2.spad" 1065845 1065857 1066497 1066502) (-688 "MAPPKG1.spad" 1064673 1064683 1065835 1065840) (-687 "MAPPAST.spad" 1063988 1063996 1064663 1064668) (-686 "MAPHACK3.spad" 1063800 1063814 1063978 1063983) (-685 "MAPHACK2.spad" 1063569 1063581 1063790 1063795) (-684 "MAPHACK1.spad" 1063213 1063223 1063559 1063564) (-683 "MAGMA.spad" 1061003 1061020 1063203 1063208) (-682 "MACROAST.spad" 1060582 1060590 1060993 1060998) (-681 "M3D.spad" 1058302 1058312 1059960 1059965) (-680 "LZSTAGG.spad" 1055540 1055550 1058292 1058297) (-679 "LZSTAGG.spad" 1052776 1052788 1055530 1055535) (-678 "LWORD.spad" 1049481 1049498 1052766 1052771) (-677 "LSTAST.spad" 1049265 1049273 1049471 1049476) (-676 "LSQM.spad" 1047495 1047509 1047889 1047940) (-675 "LSPP.spad" 1047030 1047047 1047485 1047490) (-674 "LSMP.spad" 1045880 1045908 1047020 1047025) (-673 "LSMP1.spad" 1043698 1043712 1045870 1045875) (-672 "LSAGG.spad" 1043367 1043377 1043666 1043693) (-671 "LSAGG.spad" 1043056 1043068 1043357 1043362) (-670 "LPOLY.spad" 1042010 1042029 1042912 1042981) (-669 "LPEFRAC.spad" 1041281 1041291 1042000 1042005) (-668 "LO.spad" 1040682 1040696 1041215 1041242) (-667 "LOGIC.spad" 1040284 1040292 1040672 1040677) (-666 "LOGIC.spad" 1039884 1039894 1040274 1040279) (-665 "LODOOPS.spad" 1038814 1038826 1039874 1039879) (-664 "LODO.spad" 1038198 1038214 1038494 1038533) (-663 "LODOF.spad" 1037244 1037261 1038155 1038160) (-662 "LODOCAT.spad" 1035910 1035920 1037200 1037239) (-661 "LODOCAT.spad" 1034574 1034586 1035866 1035871) (-660 "LODO2.spad" 1033847 1033859 1034254 1034293) (-659 "LODO1.spad" 1033247 1033257 1033527 1033566) (-658 "LODEEF.spad" 1032049 1032067 1033237 1033242) (-657 "LNAGG.spad" 1027881 1027891 1032039 1032044) (-656 "LNAGG.spad" 1023677 1023689 1027837 1027842) (-655 "LMOPS.spad" 1020445 1020462 1023667 1023672) (-654 "LMODULE.spad" 1020213 1020223 1020435 1020440) (-653 "LMDICT.spad" 1019500 1019510 1019764 1019791) (-652 "LLINSET.spad" 1018897 1018907 1019490 1019495) (-651 "LITERAL.spad" 1018803 1018814 1018887 1018892) (-650 "LIST.spad" 1016538 1016548 1017950 1017977) (-649 "LIST3.spad" 1015849 1015863 1016528 1016533) (-648 "LIST2.spad" 1014551 1014563 1015839 1015844) (-647 "LIST2MAP.spad" 1011454 1011466 1014541 1014546) (-646 "LINSET.spad" 1011076 1011086 1011444 1011449) (-645 "LINEXP.spad" 1010510 1010520 1011056 1011071) (-644 "LINDEP.spad" 1009319 1009331 1010422 1010427) (-643 "LIMITRF.spad" 1007247 1007257 1009309 1009314) (-642 "LIMITPS.spad" 1006150 1006163 1007237 1007242) (-641 "LIE.spad" 1004166 1004178 1005440 1005585) (-640 "LIECAT.spad" 1003642 1003652 1004092 1004161) (-639 "LIECAT.spad" 1003146 1003158 1003598 1003603) (-638 "LIB.spad" 1001196 1001204 1001805 1001820) (-637 "LGROBP.spad" 998549 998568 1001186 1001191) (-636 "LF.spad" 997504 997520 998539 998544) (-635 "LFCAT.spad" 996563 996571 997494 997499) (-634 "LEXTRIPK.spad" 992066 992081 996553 996558) (-633 "LEXP.spad" 990069 990096 992046 992061) (-632 "LETAST.spad" 989768 989776 990059 990064) (-631 "LEADCDET.spad" 988166 988183 989758 989763) (-630 "LAZM3PK.spad" 986870 986892 988156 988161) (-629 "LAUPOL.spad" 985563 985576 986463 986532) (-628 "LAPLACE.spad" 985146 985162 985553 985558) (-627 "LA.spad" 984586 984600 985068 985107) (-626 "LALG.spad" 984362 984372 984566 984581) (-625 "LALG.spad" 984146 984158 984352 984357) (-624 "KVTFROM.spad" 983881 983891 984136 984141) (-623 "KTVLOGIC.spad" 983393 983401 983871 983876) (-622 "KRCFROM.spad" 983131 983141 983383 983388) (-621 "KOVACIC.spad" 981854 981871 983121 983126) (-620 "KONVERT.spad" 981576 981586 981844 981849) (-619 "KOERCE.spad" 981313 981323 981566 981571) (-618 "KERNEL.spad" 979968 979978 981097 981102) (-617 "KERNEL2.spad" 979671 979683 979958 979963) (-616 "KDAGG.spad" 978780 978802 979651 979666) (-615 "KDAGG.spad" 977897 977921 978770 978775) (-614 "KAFILE.spad" 976860 976876 977095 977122) (-613 "JORDAN.spad" 974689 974701 976150 976295) (-612 "JOINAST.spad" 974383 974391 974679 974684) (-611 "JAVACODE.spad" 974249 974257 974373 974378) (-610 "IXAGG.spad" 972382 972406 974239 974244) (-609 "IXAGG.spad" 970370 970396 972229 972234) (-608 "IVECTOR.spad" 969140 969155 969295 969322) (-607 "ITUPLE.spad" 968301 968311 969130 969135) (-606 "ITRIGMNP.spad" 967140 967159 968291 968296) (-605 "ITFUN3.spad" 966646 966660 967130 967135) (-604 "ITFUN2.spad" 966390 966402 966636 966641) (-603 "ITFORM.spad" 965745 965753 966380 966385) (-602 "ITAYLOR.spad" 963739 963754 965609 965706) (-601 "ISUPS.spad" 956176 956191 962713 962810) (-600 "ISUMP.spad" 955677 955693 956166 956171) (-599 "ISTRING.spad" 954765 954778 954846 954873) (-598 "ISAST.spad" 954484 954492 954755 954760) (-597 "IRURPK.spad" 953201 953220 954474 954479) (-596 "IRSN.spad" 951173 951181 953191 953196) (-595 "IRRF2F.spad" 949658 949668 951129 951134) (-594 "IRREDFFX.spad" 949259 949270 949648 949653) (-593 "IROOT.spad" 947598 947608 949249 949254) (-592 "IR.spad" 945399 945413 947453 947480) (-591 "IRFORM.spad" 944723 944731 945389 945394) (-590 "IR2.spad" 943751 943767 944713 944718) (-589 "IR2F.spad" 942957 942973 943741 943746) (-588 "IPRNTPK.spad" 942717 942725 942947 942952) (-587 "IPF.spad" 942282 942294 942522 942615) (-586 "IPADIC.spad" 942043 942069 942208 942277) (-585 "IP4ADDR.spad" 941600 941608 942033 942038) (-584 "IOMODE.spad" 941122 941130 941590 941595) (-583 "IOBFILE.spad" 940483 940491 941112 941117) (-582 "IOBCON.spad" 940348 940356 940473 940478) (-581 "INVLAPLA.spad" 939997 940013 940338 940343) (-580 "INTTR.spad" 933379 933396 939987 939992) (-579 "INTTOOLS.spad" 931134 931150 932953 932958) (-578 "INTSLPE.spad" 930454 930462 931124 931129) (-577 "INTRVL.spad" 930020 930030 930368 930449) (-576 "INTRF.spad" 928444 928458 930010 930015) (-575 "INTRET.spad" 927876 927886 928434 928439) (-574 "INTRAT.spad" 926603 926620 927866 927871) (-573 "INTPM.spad" 924988 925004 926246 926251) (-572 "INTPAF.spad" 922852 922870 924920 924925) (-571 "INTPACK.spad" 913226 913234 922842 922847) (-570 "INT.spad" 912674 912682 913080 913221) (-569 "INTHERTR.spad" 911948 911965 912664 912669) (-568 "INTHERAL.spad" 911618 911642 911938 911943) (-567 "INTHEORY.spad" 908057 908065 911608 911613) (-566 "INTG0.spad" 901790 901808 907989 907994) (-565 "INTFTBL.spad" 895819 895827 901780 901785) (-564 "INTFACT.spad" 894878 894888 895809 895814) (-563 "INTEF.spad" 893263 893279 894868 894873) (-562 "INTDOM.spad" 891886 891894 893189 893258) (-561 "INTDOM.spad" 890571 890581 891876 891881) (-560 "INTCAT.spad" 888830 888840 890485 890566) (-559 "INTBIT.spad" 888337 888345 888820 888825) (-558 "INTALG.spad" 887525 887552 888327 888332) (-557 "INTAF.spad" 887025 887041 887515 887520) (-556 "INTABL.spad" 885543 885574 885706 885733) (-555 "INT8.spad" 885423 885431 885533 885538) (-554 "INT64.spad" 885302 885310 885413 885418) (-553 "INT32.spad" 885181 885189 885292 885297) (-552 "INT16.spad" 885060 885068 885171 885176) (-551 "INS.spad" 882563 882571 884962 885055) (-550 "INS.spad" 880152 880162 882553 882558) (-549 "INPSIGN.spad" 879600 879613 880142 880147) (-548 "INPRODPF.spad" 878696 878715 879590 879595) (-547 "INPRODFF.spad" 877784 877808 878686 878691) (-546 "INNMFACT.spad" 876759 876776 877774 877779) (-545 "INMODGCD.spad" 876247 876277 876749 876754) (-544 "INFSP.spad" 874544 874566 876237 876242) (-543 "INFPROD0.spad" 873624 873643 874534 874539) (-542 "INFORM.spad" 870823 870831 873614 873619) (-541 "INFORM1.spad" 870448 870458 870813 870818) (-540 "INFINITY.spad" 870000 870008 870438 870443) (-539 "INETCLTS.spad" 869977 869985 869990 869995) (-538 "INEP.spad" 868515 868537 869967 869972) (-537 "INDE.spad" 868244 868261 868505 868510) (-536 "INCRMAPS.spad" 867665 867675 868234 868239) (-535 "INBFILE.spad" 866737 866745 867655 867660) (-534 "INBFF.spad" 862531 862542 866727 866732) (-533 "INBCON.spad" 860821 860829 862521 862526) (-532 "INBCON.spad" 859109 859119 860811 860816) (-531 "INAST.spad" 858770 858778 859099 859104) (-530 "IMPTAST.spad" 858478 858486 858760 858765) (-529 "IMATRIX.spad" 857423 857449 857935 857962) (-528 "IMATQF.spad" 856517 856561 857379 857384) (-527 "IMATLIN.spad" 855122 855146 856473 856478) (-526 "ILIST.spad" 853780 853795 854305 854332) (-525 "IIARRAY2.spad" 853168 853206 853387 853414) (-524 "IFF.spad" 852578 852594 852849 852942) (-523 "IFAST.spad" 852192 852200 852568 852573) (-522 "IFARRAY.spad" 849685 849700 851375 851402) (-521 "IFAMON.spad" 849547 849564 849641 849646) (-520 "IEVALAB.spad" 848952 848964 849537 849542) (-519 "IEVALAB.spad" 848355 848369 848942 848947) (-518 "IDPO.spad" 848153 848165 848345 848350) (-517 "IDPOAMS.spad" 847909 847921 848143 848148) (-516 "IDPOAM.spad" 847629 847641 847899 847904) (-515 "IDPC.spad" 846567 846579 847619 847624) (-514 "IDPAM.spad" 846312 846324 846557 846562) (-513 "IDPAG.spad" 846059 846071 846302 846307) (-512 "IDENT.spad" 845709 845717 846049 846054) (-511 "IDECOMP.spad" 842948 842966 845699 845704) (-510 "IDEAL.spad" 837897 837936 842883 842888) (-509 "ICDEN.spad" 837086 837102 837887 837892) (-508 "ICARD.spad" 836277 836285 837076 837081) (-507 "IBPTOOLS.spad" 834884 834901 836267 836272) (-506 "IBITS.spad" 834087 834100 834520 834547) (-505 "IBATOOL.spad" 831064 831083 834077 834082) (-504 "IBACHIN.spad" 829571 829586 831054 831059) (-503 "IARRAY2.spad" 828559 828585 829178 829205) (-502 "IARRAY1.spad" 827604 827619 827742 827769) (-501 "IAN.spad" 825827 825835 827420 827513) (-500 "IALGFACT.spad" 825430 825463 825817 825822) (-499 "HYPCAT.spad" 824854 824862 825420 825425) (-498 "HYPCAT.spad" 824276 824286 824844 824849) (-497 "HOSTNAME.spad" 824084 824092 824266 824271) (-496 "HOMOTOP.spad" 823827 823837 824074 824079) (-495 "HOAGG.spad" 821109 821119 823817 823822) (-494 "HOAGG.spad" 818166 818178 820876 820881) (-493 "HEXADEC.spad" 816268 816276 816633 816726) (-492 "HEUGCD.spad" 815303 815314 816258 816263) (-491 "HELLFDIV.spad" 814893 814917 815293 815298) (-490 "HEAP.spad" 814285 814295 814500 814527) (-489 "HEADAST.spad" 813818 813826 814275 814280) (-488 "HDP.spad" 803661 803677 804038 804169) (-487 "HDMP.spad" 800875 800890 801491 801618) (-486 "HB.spad" 799126 799134 800865 800870) (-485 "HASHTBL.spad" 797596 797627 797807 797834) (-484 "HASAST.spad" 797312 797320 797586 797591) (-483 "HACKPI.spad" 796803 796811 797214 797307) (-482 "GTSET.spad" 795742 795758 796449 796476) (-481 "GSTBL.spad" 794261 794296 794435 794450) (-480 "GSERIES.spad" 791432 791459 792393 792542) (-479 "GROUP.spad" 790705 790713 791412 791427) (-478 "GROUP.spad" 789986 789996 790695 790700) (-477 "GROEBSOL.spad" 788480 788501 789976 789981) (-476 "GRMOD.spad" 787051 787063 788470 788475) (-475 "GRMOD.spad" 785620 785634 787041 787046) (-474 "GRIMAGE.spad" 778509 778517 785610 785615) (-473 "GRDEF.spad" 776888 776896 778499 778504) (-472 "GRAY.spad" 775351 775359 776878 776883) (-471 "GRALG.spad" 774428 774440 775341 775346) (-470 "GRALG.spad" 773503 773517 774418 774423) (-469 "GPOLSET.spad" 772957 772980 773185 773212) (-468 "GOSPER.spad" 772226 772244 772947 772952) (-467 "GMODPOL.spad" 771374 771401 772194 772221) (-466 "GHENSEL.spad" 770457 770471 771364 771369) (-465 "GENUPS.spad" 766750 766763 770447 770452) (-464 "GENUFACT.spad" 766327 766337 766740 766745) (-463 "GENPGCD.spad" 765913 765930 766317 766322) (-462 "GENMFACT.spad" 765365 765384 765903 765908) (-461 "GENEEZ.spad" 763316 763329 765355 765360) (-460 "GDMP.spad" 760372 760389 761146 761273) (-459 "GCNAALG.spad" 754295 754322 760166 760233) (-458 "GCDDOM.spad" 753471 753479 754221 754290) (-457 "GCDDOM.spad" 752709 752719 753461 753466) (-456 "GB.spad" 750235 750273 752665 752670) (-455 "GBINTERN.spad" 746255 746293 750225 750230) (-454 "GBF.spad" 742022 742060 746245 746250) (-453 "GBEUCLID.spad" 739904 739942 742012 742017) (-452 "GAUSSFAC.spad" 739217 739225 739894 739899) (-451 "GALUTIL.spad" 737543 737553 739173 739178) (-450 "GALPOLYU.spad" 735997 736010 737533 737538) (-449 "GALFACTU.spad" 734170 734189 735987 735992) (-448 "GALFACT.spad" 724359 724370 734160 734165) (-447 "FVFUN.spad" 721382 721390 724349 724354) (-446 "FVC.spad" 720434 720442 721372 721377) (-445 "FUNDESC.spad" 720112 720120 720424 720429) (-444 "FUNCTION.spad" 719961 719973 720102 720107) (-443 "FT.spad" 718258 718266 719951 719956) (-442 "FTEM.spad" 717423 717431 718248 718253) (-441 "FSUPFACT.spad" 716323 716342 717359 717364) (-440 "FST.spad" 714409 714417 716313 716318) (-439 "FSRED.spad" 713889 713905 714399 714404) (-438 "FSPRMELT.spad" 712771 712787 713846 713851) (-437 "FSPECF.spad" 710862 710878 712761 712766) (-436 "FS.spad" 705130 705140 710637 710857) (-435 "FS.spad" 699176 699188 704685 704690) (-434 "FSINT.spad" 698836 698852 699166 699171) (-433 "FSERIES.spad" 698027 698039 698656 698755) (-432 "FSCINT.spad" 697344 697360 698017 698022) (-431 "FSAGG.spad" 696461 696471 697300 697339) (-430 "FSAGG.spad" 695540 695552 696381 696386) (-429 "FSAGG2.spad" 694283 694299 695530 695535) (-428 "FS2UPS.spad" 688774 688808 694273 694278) (-427 "FS2.spad" 688421 688437 688764 688769) (-426 "FS2EXPXP.spad" 687546 687569 688411 688416) (-425 "FRUTIL.spad" 686500 686510 687536 687541) (-424 "FR.spad" 680216 680226 685524 685593) (-423 "FRNAALG.spad" 675335 675345 680158 680211) (-422 "FRNAALG.spad" 670466 670478 675291 675296) (-421 "FRNAAF2.spad" 669922 669940 670456 670461) (-420 "FRMOD.spad" 669332 669362 669853 669858) (-419 "FRIDEAL.spad" 668557 668578 669312 669327) (-418 "FRIDEAL2.spad" 668161 668193 668547 668552) (-417 "FRETRCT.spad" 667672 667682 668151 668156) (-416 "FRETRCT.spad" 667049 667061 667530 667535) (-415 "FRAMALG.spad" 665397 665410 667005 667044) (-414 "FRAMALG.spad" 663777 663792 665387 665392) (-413 "FRAC.spad" 660876 660886 661279 661452) (-412 "FRAC2.spad" 660481 660493 660866 660871) (-411 "FR2.spad" 659817 659829 660471 660476) (-410 "FPS.spad" 656632 656640 659707 659812) (-409 "FPS.spad" 653475 653485 656552 656557) (-408 "FPC.spad" 652521 652529 653377 653470) (-407 "FPC.spad" 651653 651663 652511 652516) (-406 "FPATMAB.spad" 651415 651425 651643 651648) (-405 "FPARFRAC.spad" 649902 649919 651405 651410) (-404 "FORTRAN.spad" 648408 648451 649892 649897) (-403 "FORT.spad" 647357 647365 648398 648403) (-402 "FORTFN.spad" 644527 644535 647347 647352) (-401 "FORTCAT.spad" 644211 644219 644517 644522) (-400 "FORMULA.spad" 641685 641693 644201 644206) (-399 "FORMULA1.spad" 641164 641174 641675 641680) (-398 "FORDER.spad" 640855 640879 641154 641159) (-397 "FOP.spad" 640056 640064 640845 640850) (-396 "FNLA.spad" 639480 639502 640024 640051) (-395 "FNCAT.spad" 638075 638083 639470 639475) (-394 "FNAME.spad" 637967 637975 638065 638070) (-393 "FMTC.spad" 637765 637773 637893 637962) (-392 "FMONOID.spad" 637430 637440 637721 637726) (-391 "FMONCAT.spad" 634583 634593 637420 637425) (-390 "FM.spad" 634278 634290 634517 634544) (-389 "FMFUN.spad" 631308 631316 634268 634273) (-388 "FMC.spad" 630360 630368 631298 631303) (-387 "FMCAT.spad" 628028 628046 630328 630355) (-386 "FM1.spad" 627385 627397 627962 627989) (-385 "FLOATRP.spad" 625120 625134 627375 627380) (-384 "FLOAT.spad" 618434 618442 624986 625115) (-383 "FLOATCP.spad" 615865 615879 618424 618429) (-382 "FLINEXP.spad" 615577 615587 615845 615860) (-381 "FLINEXP.spad" 615243 615255 615513 615518) (-380 "FLASORT.spad" 614569 614581 615233 615238) (-379 "FLALG.spad" 612215 612234 614495 614564) (-378 "FLAGG.spad" 609257 609267 612195 612210) (-377 "FLAGG.spad" 606200 606212 609140 609145) (-376 "FLAGG2.spad" 604925 604941 606190 606195) (-375 "FINRALG.spad" 602986 602999 604881 604920) (-374 "FINRALG.spad" 600973 600988 602870 602875) (-373 "FINITE.spad" 600125 600133 600963 600968) (-372 "FINAALG.spad" 589246 589256 600067 600120) (-371 "FINAALG.spad" 578379 578391 589202 589207) (-370 "FILE.spad" 577962 577972 578369 578374) (-369 "FILECAT.spad" 576488 576505 577952 577957) (-368 "FIELD.spad" 575894 575902 576390 576483) (-367 "FIELD.spad" 575386 575396 575884 575889) (-366 "FGROUP.spad" 574033 574043 575366 575381) (-365 "FGLMICPK.spad" 572820 572835 574023 574028) (-364 "FFX.spad" 572195 572210 572536 572629) (-363 "FFSLPE.spad" 571698 571719 572185 572190) (-362 "FFPOLY.spad" 562960 562971 571688 571693) (-361 "FFPOLY2.spad" 562020 562037 562950 562955) (-360 "FFP.spad" 561417 561437 561736 561829) (-359 "FF.spad" 560865 560881 561098 561191) (-358 "FFNBX.spad" 559377 559397 560581 560674) (-357 "FFNBP.spad" 557890 557907 559093 559186) (-356 "FFNB.spad" 556355 556376 557571 557664) (-355 "FFINTBAS.spad" 553869 553888 556345 556350) (-354 "FFIELDC.spad" 551446 551454 553771 553864) (-353 "FFIELDC.spad" 549109 549119 551436 551441) (-352 "FFHOM.spad" 547857 547874 549099 549104) (-351 "FFF.spad" 545292 545303 547847 547852) (-350 "FFCGX.spad" 544139 544159 545008 545101) (-349 "FFCGP.spad" 543028 543048 543855 543948) (-348 "FFCG.spad" 541820 541841 542709 542802) (-347 "FFCAT.spad" 534993 535015 541659 541815) (-346 "FFCAT.spad" 528245 528269 534913 534918) (-345 "FFCAT2.spad" 527992 528032 528235 528240) (-344 "FEXPR.spad" 519709 519755 527748 527787) (-343 "FEVALAB.spad" 519417 519427 519699 519704) (-342 "FEVALAB.spad" 518910 518922 519194 519199) (-341 "FDIV.spad" 518352 518376 518900 518905) (-340 "FDIVCAT.spad" 516416 516440 518342 518347) (-339 "FDIVCAT.spad" 514478 514504 516406 516411) (-338 "FDIV2.spad" 514134 514174 514468 514473) (-337 "FCTRDATA.spad" 513142 513150 514124 514129) (-336 "FCPAK1.spad" 511709 511717 513132 513137) (-335 "FCOMP.spad" 511088 511098 511699 511704) (-334 "FC.spad" 501095 501103 511078 511083) (-333 "FAXF.spad" 494066 494080 500997 501090) (-332 "FAXF.spad" 487089 487105 494022 494027) (-331 "FARRAY.spad" 485239 485249 486272 486299) (-330 "FAMR.spad" 483375 483387 485137 485234) (-329 "FAMR.spad" 481495 481509 483259 483264) (-328 "FAMONOID.spad" 481163 481173 481449 481454) (-327 "FAMONC.spad" 479459 479471 481153 481158) (-326 "FAGROUP.spad" 479083 479093 479355 479382) (-325 "FACUTIL.spad" 477287 477304 479073 479078) (-324 "FACTFUNC.spad" 476481 476491 477277 477282) (-323 "EXPUPXS.spad" 473314 473337 474613 474762) (-322 "EXPRTUBE.spad" 470602 470610 473304 473309) (-321 "EXPRODE.spad" 467762 467778 470592 470597) (-320 "EXPR.spad" 463037 463047 463751 464158) (-319 "EXPR2UPS.spad" 459159 459172 463027 463032) (-318 "EXPR2.spad" 458864 458876 459149 459154) (-317 "EXPEXPAN.spad" 455804 455829 456436 456529) (-316 "EXIT.spad" 455475 455483 455794 455799) (-315 "EXITAST.spad" 455211 455219 455465 455470) (-314 "EVALCYC.spad" 454671 454685 455201 455206) (-313 "EVALAB.spad" 454243 454253 454661 454666) (-312 "EVALAB.spad" 453813 453825 454233 454238) (-311 "EUCDOM.spad" 451387 451395 453739 453808) (-310 "EUCDOM.spad" 449023 449033 451377 451382) (-309 "ESTOOLS.spad" 440869 440877 449013 449018) (-308 "ESTOOLS2.spad" 440472 440486 440859 440864) (-307 "ESTOOLS1.spad" 440157 440168 440462 440467) (-306 "ES.spad" 432972 432980 440147 440152) (-305 "ES.spad" 425693 425703 432870 432875) (-304 "ESCONT.spad" 422486 422494 425683 425688) (-303 "ESCONT1.spad" 422235 422247 422476 422481) (-302 "ES2.spad" 421740 421756 422225 422230) (-301 "ES1.spad" 421310 421326 421730 421735) (-300 "ERROR.spad" 418637 418645 421300 421305) (-299 "EQTBL.spad" 417109 417131 417318 417345) (-298 "EQ.spad" 411914 411924 414701 414813) (-297 "EQ2.spad" 411632 411644 411904 411909) (-296 "EP.spad" 407958 407968 411622 411627) (-295 "ENV.spad" 406636 406644 407948 407953) (-294 "ENTIRER.spad" 406304 406312 406580 406631) (-293 "EMR.spad" 405511 405552 406230 406299) (-292 "ELTAGG.spad" 403765 403784 405501 405506) (-291 "ELTAGG.spad" 401983 402004 403721 403726) (-290 "ELTAB.spad" 401432 401450 401973 401978) (-289 "ELFUTS.spad" 400819 400838 401422 401427) (-288 "ELEMFUN.spad" 400508 400516 400809 400814) (-287 "ELEMFUN.spad" 400195 400205 400498 400503) (-286 "ELAGG.spad" 398166 398176 400175 400190) (-285 "ELAGG.spad" 396074 396086 398085 398090) (-284 "ELABOR.spad" 395420 395428 396064 396069) (-283 "ELABEXPR.spad" 394352 394360 395410 395415) (-282 "EFUPXS.spad" 391128 391158 394308 394313) (-281 "EFULS.spad" 387964 387987 391084 391089) (-280 "EFSTRUC.spad" 385979 385995 387954 387959) (-279 "EF.spad" 380755 380771 385969 385974) (-278 "EAB.spad" 379031 379039 380745 380750) (-277 "E04UCFA.spad" 378567 378575 379021 379026) (-276 "E04NAFA.spad" 378144 378152 378557 378562) (-275 "E04MBFA.spad" 377724 377732 378134 378139) (-274 "E04JAFA.spad" 377260 377268 377714 377719) (-273 "E04GCFA.spad" 376796 376804 377250 377255) (-272 "E04FDFA.spad" 376332 376340 376786 376791) (-271 "E04DGFA.spad" 375868 375876 376322 376327) (-270 "E04AGNT.spad" 371718 371726 375858 375863) (-269 "DVARCAT.spad" 368407 368417 371708 371713) (-268 "DVARCAT.spad" 365094 365106 368397 368402) (-267 "DSMP.spad" 362561 362575 362866 362993) (-266 "DROPT.spad" 356520 356528 362551 362556) (-265 "DROPT1.spad" 356185 356195 356510 356515) (-264 "DROPT0.spad" 351042 351050 356175 356180) (-263 "DRAWPT.spad" 349215 349223 351032 351037) (-262 "DRAW.spad" 342091 342104 349205 349210) (-261 "DRAWHACK.spad" 341399 341409 342081 342086) (-260 "DRAWCX.spad" 338869 338877 341389 341394) (-259 "DRAWCURV.spad" 338416 338431 338859 338864) (-258 "DRAWCFUN.spad" 327948 327956 338406 338411) (-257 "DQAGG.spad" 326126 326136 327916 327943) (-256 "DPOLCAT.spad" 321475 321491 325994 326121) (-255 "DPOLCAT.spad" 316910 316928 321431 321436) (-254 "DPMO.spad" 309136 309152 309274 309575) (-253 "DPMM.spad" 301375 301393 301500 301801) (-252 "DOMTMPLT.spad" 301035 301043 301365 301370) (-251 "DOMCTOR.spad" 300790 300798 301025 301030) (-250 "DOMAIN.spad" 299877 299885 300780 300785) (-249 "DMP.spad" 297137 297152 297707 297834) (-248 "DLP.spad" 296489 296499 297127 297132) (-247 "DLIST.spad" 295068 295078 295672 295699) (-246 "DLAGG.spad" 293485 293495 295058 295063) (-245 "DIVRING.spad" 293027 293035 293429 293480) (-244 "DIVRING.spad" 292613 292623 293017 293022) (-243 "DISPLAY.spad" 290803 290811 292603 292608) (-242 "DIRPROD.spad" 280383 280399 281023 281154) (-241 "DIRPROD2.spad" 279201 279219 280373 280378) (-240 "DIRPCAT.spad" 278145 278161 279065 279196) (-239 "DIRPCAT.spad" 276818 276836 277740 277745) (-238 "DIOSP.spad" 275643 275651 276808 276813) (-237 "DIOPS.spad" 274639 274649 275623 275638) (-236 "DIOPS.spad" 273609 273621 274595 274600) (-235 "DIFRING.spad" 272905 272913 273589 273604) (-234 "DIFRING.spad" 272209 272219 272895 272900) (-233 "DIFEXT.spad" 271380 271390 272189 272204) (-232 "DIFEXT.spad" 270468 270480 271279 271284) (-231 "DIAGG.spad" 270098 270108 270448 270463) (-230 "DIAGG.spad" 269736 269748 270088 270093) (-229 "DHMATRIX.spad" 268048 268058 269193 269220) (-228 "DFSFUN.spad" 261688 261696 268038 268043) (-227 "DFLOAT.spad" 258419 258427 261578 261683) (-226 "DFINTTLS.spad" 256650 256666 258409 258414) (-225 "DERHAM.spad" 254564 254596 256630 256645) (-224 "DEQUEUE.spad" 253888 253898 254171 254198) (-223 "DEGRED.spad" 253505 253519 253878 253883) (-222 "DEFINTRF.spad" 251042 251052 253495 253500) (-221 "DEFINTEF.spad" 249552 249568 251032 251037) (-220 "DEFAST.spad" 248920 248928 249542 249547) (-219 "DECIMAL.spad" 247026 247034 247387 247480) (-218 "DDFACT.spad" 244839 244856 247016 247021) (-217 "DBLRESP.spad" 244439 244463 244829 244834) (-216 "DBASE.spad" 243103 243113 244429 244434) (-215 "DATAARY.spad" 242565 242578 243093 243098) (-214 "D03FAFA.spad" 242393 242401 242555 242560) (-213 "D03EEFA.spad" 242213 242221 242383 242388) (-212 "D03AGNT.spad" 241299 241307 242203 242208) (-211 "D02EJFA.spad" 240761 240769 241289 241294) (-210 "D02CJFA.spad" 240239 240247 240751 240756) (-209 "D02BHFA.spad" 239729 239737 240229 240234) (-208 "D02BBFA.spad" 239219 239227 239719 239724) (-207 "D02AGNT.spad" 234033 234041 239209 239214) (-206 "D01WGTS.spad" 232352 232360 234023 234028) (-205 "D01TRNS.spad" 232329 232337 232342 232347) (-204 "D01GBFA.spad" 231851 231859 232319 232324) (-203 "D01FCFA.spad" 231373 231381 231841 231846) (-202 "D01ASFA.spad" 230841 230849 231363 231368) (-201 "D01AQFA.spad" 230287 230295 230831 230836) (-200 "D01APFA.spad" 229711 229719 230277 230282) (-199 "D01ANFA.spad" 229205 229213 229701 229706) (-198 "D01AMFA.spad" 228715 228723 229195 229200) (-197 "D01ALFA.spad" 228255 228263 228705 228710) (-196 "D01AKFA.spad" 227781 227789 228245 228250) (-195 "D01AJFA.spad" 227304 227312 227771 227776) (-194 "D01AGNT.spad" 223371 223379 227294 227299) (-193 "CYCLOTOM.spad" 222877 222885 223361 223366) (-192 "CYCLES.spad" 219669 219677 222867 222872) (-191 "CVMP.spad" 219086 219096 219659 219664) (-190 "CTRIGMNP.spad" 217586 217602 219076 219081) (-189 "CTOR.spad" 217277 217285 217576 217581) (-188 "CTORKIND.spad" 216880 216888 217267 217272) (-187 "CTORCAT.spad" 216129 216137 216870 216875) (-186 "CTORCAT.spad" 215376 215386 216119 216124) (-185 "CTORCALL.spad" 214965 214975 215366 215371) (-184 "CSTTOOLS.spad" 214210 214223 214955 214960) (-183 "CRFP.spad" 207934 207947 214200 214205) (-182 "CRCEAST.spad" 207654 207662 207924 207929) (-181 "CRAPACK.spad" 206705 206715 207644 207649) (-180 "CPMATCH.spad" 206209 206224 206630 206635) (-179 "CPIMA.spad" 205914 205933 206199 206204) (-178 "COORDSYS.spad" 200923 200933 205904 205909) (-177 "CONTOUR.spad" 200334 200342 200913 200918) (-176 "CONTFRAC.spad" 196084 196094 200236 200329) (-175 "CONDUIT.spad" 195842 195850 196074 196079) (-174 "COMRING.spad" 195516 195524 195780 195837) (-173 "COMPPROP.spad" 195034 195042 195506 195511) (-172 "COMPLPAT.spad" 194801 194816 195024 195029) (-171 "COMPLEX.spad" 188938 188948 189182 189443) (-170 "COMPLEX2.spad" 188653 188665 188928 188933) (-169 "COMPILER.spad" 188202 188210 188643 188648) (-168 "COMPFACT.spad" 187804 187818 188192 188197) (-167 "COMPCAT.spad" 185876 185886 187538 187799) (-166 "COMPCAT.spad" 183676 183688 185340 185345) (-165 "COMMUPC.spad" 183424 183442 183666 183671) (-164 "COMMONOP.spad" 182957 182965 183414 183419) (-163 "COMM.spad" 182768 182776 182947 182952) (-162 "COMMAAST.spad" 182531 182539 182758 182763) (-161 "COMBOPC.spad" 181446 181454 182521 182526) (-160 "COMBINAT.spad" 180213 180223 181436 181441) (-159 "COMBF.spad" 177595 177611 180203 180208) (-158 "COLOR.spad" 176432 176440 177585 177590) (-157 "COLONAST.spad" 176098 176106 176422 176427) (-156 "CMPLXRT.spad" 175809 175826 176088 176093) (-155 "CLLCTAST.spad" 175471 175479 175799 175804) (-154 "CLIP.spad" 171579 171587 175461 175466) (-153 "CLIF.spad" 170234 170250 171535 171574) (-152 "CLAGG.spad" 166739 166749 170224 170229) (-151 "CLAGG.spad" 163115 163127 166602 166607) (-150 "CINTSLPE.spad" 162446 162459 163105 163110) (-149 "CHVAR.spad" 160584 160606 162436 162441) (-148 "CHARZ.spad" 160499 160507 160564 160579) (-147 "CHARPOL.spad" 160009 160019 160489 160494) (-146 "CHARNZ.spad" 159762 159770 159989 160004) (-145 "CHAR.spad" 157636 157644 159752 159757) (-144 "CFCAT.spad" 156964 156972 157626 157631) (-143 "CDEN.spad" 156160 156174 156954 156959) (-142 "CCLASS.spad" 154309 154317 155571 155610) (-141 "CATEGORY.spad" 153351 153359 154299 154304) (-140 "CATCTOR.spad" 153242 153250 153341 153346) (-139 "CATAST.spad" 152860 152868 153232 153237) (-138 "CASEAST.spad" 152574 152582 152850 152855) (-137 "CARTEN.spad" 147861 147885 152564 152569) (-136 "CARTEN2.spad" 147251 147278 147851 147856) (-135 "CARD.spad" 144546 144554 147225 147246) (-134 "CAPSLAST.spad" 144320 144328 144536 144541) (-133 "CACHSET.spad" 143944 143952 144310 144315) (-132 "CABMON.spad" 143499 143507 143934 143939) (-131 "BYTEORD.spad" 143174 143182 143489 143494) (-130 "BYTE.spad" 142601 142609 143164 143169) (-129 "BYTEBUF.spad" 140460 140468 141770 141797) (-128 "BTREE.spad" 139533 139543 140067 140094) (-127 "BTOURN.spad" 138538 138548 139140 139167) (-126 "BTCAT.spad" 137930 137940 138506 138533) (-125 "BTCAT.spad" 137342 137354 137920 137925) (-124 "BTAGG.spad" 136808 136816 137310 137337) (-123 "BTAGG.spad" 136294 136304 136798 136803) (-122 "BSTREE.spad" 135035 135045 135901 135928) (-121 "BRILL.spad" 133232 133243 135025 135030) (-120 "BRAGG.spad" 132172 132182 133222 133227) (-119 "BRAGG.spad" 131076 131088 132128 132133) (-118 "BPADICRT.spad" 129057 129069 129312 129405) (-117 "BPADIC.spad" 128721 128733 128983 129052) (-116 "BOUNDZRO.spad" 128377 128394 128711 128716) (-115 "BOP.spad" 123559 123567 128367 128372) (-114 "BOP1.spad" 121025 121035 123549 123554) (-113 "BOOLE.spad" 120675 120683 121015 121020) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file +((-3 NIL 2266397 2266402 2266407 2266412) (-2 NIL 2266377 2266382 2266387 2266392) (-1 NIL 2266357 2266362 2266367 2266372) (0 NIL 2266337 2266342 2266347 2266352) (-1306 "ZMOD.spad" 2266146 2266159 2266275 2266332) (-1305 "ZLINDEP.spad" 2265212 2265223 2266136 2266141) (-1304 "ZDSOLVE.spad" 2255157 2255179 2265202 2265207) (-1303 "YSTREAM.spad" 2254652 2254663 2255147 2255152) (-1302 "YDIAGRAM.spad" 2254286 2254295 2254642 2254647) (-1301 "XRPOLY.spad" 2253506 2253526 2254142 2254211) (-1300 "XPR.spad" 2251301 2251314 2253224 2253323) (-1299 "XPOLY.spad" 2250856 2250867 2251157 2251226) (-1298 "XPOLYC.spad" 2250175 2250191 2250782 2250851) (-1297 "XPBWPOLY.spad" 2248612 2248632 2249955 2250024) (-1296 "XF.spad" 2247075 2247090 2248514 2248607) (-1295 "XF.spad" 2245518 2245535 2246959 2246964) (-1294 "XFALG.spad" 2242566 2242582 2245444 2245513) (-1293 "XEXPPKG.spad" 2241817 2241843 2242556 2242561) (-1292 "XDPOLY.spad" 2241431 2241447 2241673 2241742) (-1291 "XALG.spad" 2241091 2241102 2241387 2241426) (-1290 "WUTSET.spad" 2236930 2236947 2240737 2240764) (-1289 "WP.spad" 2236129 2236173 2236788 2236855) (-1288 "WHILEAST.spad" 2235927 2235936 2236119 2236124) (-1287 "WHEREAST.spad" 2235598 2235607 2235917 2235922) (-1286 "WFFINTBS.spad" 2233261 2233283 2235588 2235593) (-1285 "WEIER.spad" 2231483 2231494 2233251 2233256) (-1284 "VSPACE.spad" 2231156 2231167 2231451 2231478) (-1283 "VSPACE.spad" 2230849 2230862 2231146 2231151) (-1282 "VOID.spad" 2230526 2230535 2230839 2230844) (-1281 "VIEW.spad" 2228206 2228215 2230516 2230521) (-1280 "VIEWDEF.spad" 2223407 2223416 2228196 2228201) (-1279 "VIEW3D.spad" 2207368 2207377 2223397 2223402) (-1278 "VIEW2D.spad" 2195259 2195268 2207358 2207363) (-1277 "VECTOR.spad" 2193933 2193944 2194184 2194211) (-1276 "VECTOR2.spad" 2192572 2192585 2193923 2193928) (-1275 "VECTCAT.spad" 2190476 2190487 2192540 2192567) (-1274 "VECTCAT.spad" 2188187 2188200 2190253 2190258) (-1273 "VARIABLE.spad" 2187967 2187982 2188177 2188182) (-1272 "UTYPE.spad" 2187611 2187620 2187957 2187962) (-1271 "UTSODETL.spad" 2186906 2186930 2187567 2187572) (-1270 "UTSODE.spad" 2185122 2185142 2186896 2186901) (-1269 "UTS.spad" 2179926 2179954 2183589 2183686) (-1268 "UTSCAT.spad" 2177405 2177421 2179824 2179921) (-1267 "UTSCAT.spad" 2174528 2174546 2176949 2176954) (-1266 "UTS2.spad" 2174123 2174158 2174518 2174523) (-1265 "URAGG.spad" 2168796 2168807 2174113 2174118) (-1264 "URAGG.spad" 2163433 2163446 2168752 2168757) (-1263 "UPXSSING.spad" 2161078 2161104 2162514 2162647) (-1262 "UPXS.spad" 2158232 2158260 2159210 2159359) (-1261 "UPXSCONS.spad" 2155991 2156011 2156364 2156513) (-1260 "UPXSCCA.spad" 2154562 2154582 2155837 2155986) (-1259 "UPXSCCA.spad" 2153275 2153297 2154552 2154557) (-1258 "UPXSCAT.spad" 2151864 2151880 2153121 2153270) (-1257 "UPXS2.spad" 2151407 2151460 2151854 2151859) (-1256 "UPSQFREE.spad" 2149821 2149835 2151397 2151402) (-1255 "UPSCAT.spad" 2147608 2147632 2149719 2149816) (-1254 "UPSCAT.spad" 2145101 2145127 2147214 2147219) (-1253 "UPOLYC.spad" 2140141 2140152 2144943 2145096) (-1252 "UPOLYC.spad" 2135073 2135086 2139877 2139882) (-1251 "UPOLYC2.spad" 2134544 2134563 2135063 2135068) (-1250 "UP.spad" 2131743 2131758 2132130 2132283) (-1249 "UPMP.spad" 2130643 2130656 2131733 2131738) (-1248 "UPDIVP.spad" 2130208 2130222 2130633 2130638) (-1247 "UPDECOMP.spad" 2128453 2128467 2130198 2130203) (-1246 "UPCDEN.spad" 2127662 2127678 2128443 2128448) (-1245 "UP2.spad" 2127026 2127047 2127652 2127657) (-1244 "UNISEG.spad" 2126379 2126390 2126945 2126950) (-1243 "UNISEG2.spad" 2125876 2125889 2126335 2126340) (-1242 "UNIFACT.spad" 2124979 2124991 2125866 2125871) (-1241 "ULS.spad" 2115537 2115565 2116624 2117053) (-1240 "ULSCONS.spad" 2107933 2107953 2108303 2108452) (-1239 "ULSCCAT.spad" 2105670 2105690 2107779 2107928) (-1238 "ULSCCAT.spad" 2103515 2103537 2105626 2105631) (-1237 "ULSCAT.spad" 2101747 2101763 2103361 2103510) (-1236 "ULS2.spad" 2101261 2101314 2101737 2101742) (-1235 "UINT8.spad" 2101138 2101147 2101251 2101256) (-1234 "UINT64.spad" 2101014 2101023 2101128 2101133) (-1233 "UINT32.spad" 2100890 2100899 2101004 2101009) (-1232 "UINT16.spad" 2100766 2100775 2100880 2100885) (-1231 "UFD.spad" 2099831 2099840 2100692 2100761) (-1230 "UFD.spad" 2098958 2098969 2099821 2099826) (-1229 "UDVO.spad" 2097839 2097848 2098948 2098953) (-1228 "UDPO.spad" 2095332 2095343 2097795 2097800) (-1227 "TYPE.spad" 2095264 2095273 2095322 2095327) (-1226 "TYPEAST.spad" 2095183 2095192 2095254 2095259) (-1225 "TWOFACT.spad" 2093835 2093850 2095173 2095178) (-1224 "TUPLE.spad" 2093321 2093332 2093734 2093739) (-1223 "TUBETOOL.spad" 2090188 2090197 2093311 2093316) (-1222 "TUBE.spad" 2088835 2088852 2090178 2090183) (-1221 "TS.spad" 2087434 2087450 2088400 2088497) (-1220 "TSETCAT.spad" 2074561 2074578 2087402 2087429) (-1219 "TSETCAT.spad" 2061674 2061693 2074517 2074522) (-1218 "TRMANIP.spad" 2056040 2056057 2061380 2061385) (-1217 "TRIMAT.spad" 2055003 2055028 2056030 2056035) (-1216 "TRIGMNIP.spad" 2053530 2053547 2054993 2054998) (-1215 "TRIGCAT.spad" 2053042 2053051 2053520 2053525) (-1214 "TRIGCAT.spad" 2052552 2052563 2053032 2053037) (-1213 "TREE.spad" 2051127 2051138 2052159 2052186) (-1212 "TRANFUN.spad" 2050966 2050975 2051117 2051122) (-1211 "TRANFUN.spad" 2050803 2050814 2050956 2050961) (-1210 "TOPSP.spad" 2050477 2050486 2050793 2050798) (-1209 "TOOLSIGN.spad" 2050140 2050151 2050467 2050472) (-1208 "TEXTFILE.spad" 2048701 2048710 2050130 2050135) (-1207 "TEX.spad" 2045847 2045856 2048691 2048696) (-1206 "TEX1.spad" 2045403 2045414 2045837 2045842) (-1205 "TEMUTL.spad" 2044958 2044967 2045393 2045398) (-1204 "TBCMPPK.spad" 2043051 2043074 2044948 2044953) (-1203 "TBAGG.spad" 2042101 2042124 2043031 2043046) (-1202 "TBAGG.spad" 2041159 2041184 2042091 2042096) (-1201 "TANEXP.spad" 2040567 2040578 2041149 2041154) (-1200 "TALGOP.spad" 2040291 2040302 2040557 2040562) (-1199 "TABLE.spad" 2038702 2038725 2038972 2038999) (-1198 "TABLEAU.spad" 2038183 2038194 2038692 2038697) (-1197 "TABLBUMP.spad" 2034986 2034997 2038173 2038178) (-1196 "SYSTEM.spad" 2034214 2034223 2034976 2034981) (-1195 "SYSSOLP.spad" 2031697 2031708 2034204 2034209) (-1194 "SYSPTR.spad" 2031596 2031605 2031687 2031692) (-1193 "SYSNNI.spad" 2030778 2030789 2031586 2031591) (-1192 "SYSINT.spad" 2030182 2030193 2030768 2030773) (-1191 "SYNTAX.spad" 2026388 2026397 2030172 2030177) (-1190 "SYMTAB.spad" 2024456 2024465 2026378 2026383) (-1189 "SYMS.spad" 2020479 2020488 2024446 2024451) (-1188 "SYMPOLY.spad" 2019486 2019497 2019568 2019695) (-1187 "SYMFUNC.spad" 2018987 2018998 2019476 2019481) (-1186 "SYMBOL.spad" 2016490 2016499 2018977 2018982) (-1185 "SWITCH.spad" 2013261 2013270 2016480 2016485) (-1184 "SUTS.spad" 2010166 2010194 2011728 2011825) (-1183 "SUPXS.spad" 2007307 2007335 2008298 2008447) (-1182 "SUP.spad" 2004120 2004131 2004893 2005046) (-1181 "SUPFRACF.spad" 2003225 2003243 2004110 2004115) (-1180 "SUP2.spad" 2002617 2002630 2003215 2003220) (-1179 "SUMRF.spad" 2001591 2001602 2002607 2002612) (-1178 "SUMFS.spad" 2001228 2001245 2001581 2001586) (-1177 "SULS.spad" 1991773 1991801 1992873 1993302) (-1176 "SUCHTAST.spad" 1991542 1991551 1991763 1991768) (-1175 "SUCH.spad" 1991224 1991239 1991532 1991537) (-1174 "SUBSPACE.spad" 1983339 1983354 1991214 1991219) (-1173 "SUBRESP.spad" 1982509 1982523 1983295 1983300) (-1172 "STTF.spad" 1978608 1978624 1982499 1982504) (-1171 "STTFNC.spad" 1975076 1975092 1978598 1978603) (-1170 "STTAYLOR.spad" 1967711 1967722 1974957 1974962) (-1169 "STRTBL.spad" 1966216 1966233 1966365 1966392) (-1168 "STRING.spad" 1965625 1965634 1965639 1965666) (-1167 "STRICAT.spad" 1965413 1965422 1965593 1965620) (-1166 "STREAM.spad" 1962331 1962342 1964938 1964953) (-1165 "STREAM3.spad" 1961904 1961919 1962321 1962326) (-1164 "STREAM2.spad" 1961032 1961045 1961894 1961899) (-1163 "STREAM1.spad" 1960738 1960749 1961022 1961027) (-1162 "STINPROD.spad" 1959674 1959690 1960728 1960733) (-1161 "STEP.spad" 1958875 1958884 1959664 1959669) (-1160 "STEPAST.spad" 1958109 1958118 1958865 1958870) (-1159 "STBL.spad" 1956635 1956663 1956802 1956817) (-1158 "STAGG.spad" 1955710 1955721 1956625 1956630) (-1157 "STAGG.spad" 1954783 1954796 1955700 1955705) (-1156 "STACK.spad" 1954140 1954151 1954390 1954417) (-1155 "SREGSET.spad" 1951844 1951861 1953786 1953813) (-1154 "SRDCMPK.spad" 1950405 1950425 1951834 1951839) (-1153 "SRAGG.spad" 1945548 1945557 1950373 1950400) (-1152 "SRAGG.spad" 1940711 1940722 1945538 1945543) (-1151 "SQMATRIX.spad" 1938327 1938345 1939243 1939330) (-1150 "SPLTREE.spad" 1932879 1932892 1937763 1937790) (-1149 "SPLNODE.spad" 1929467 1929480 1932869 1932874) (-1148 "SPFCAT.spad" 1928276 1928285 1929457 1929462) (-1147 "SPECOUT.spad" 1926828 1926837 1928266 1928271) (-1146 "SPADXPT.spad" 1918423 1918432 1926818 1926823) (-1145 "spad-parser.spad" 1917888 1917897 1918413 1918418) (-1144 "SPADAST.spad" 1917589 1917598 1917878 1917883) (-1143 "SPACEC.spad" 1901788 1901799 1917579 1917584) (-1142 "SPACE3.spad" 1901564 1901575 1901778 1901783) (-1141 "SORTPAK.spad" 1901113 1901126 1901520 1901525) (-1140 "SOLVETRA.spad" 1898876 1898887 1901103 1901108) (-1139 "SOLVESER.spad" 1897404 1897415 1898866 1898871) (-1138 "SOLVERAD.spad" 1893430 1893441 1897394 1897399) (-1137 "SOLVEFOR.spad" 1891892 1891910 1893420 1893425) (-1136 "SNTSCAT.spad" 1891492 1891509 1891860 1891887) (-1135 "SMTS.spad" 1889764 1889790 1891057 1891154) (-1134 "SMP.spad" 1887239 1887259 1887629 1887756) (-1133 "SMITH.spad" 1886084 1886109 1887229 1887234) (-1132 "SMATCAT.spad" 1884194 1884224 1886028 1886079) (-1131 "SMATCAT.spad" 1882236 1882268 1884072 1884077) (-1130 "SKAGG.spad" 1881199 1881210 1882204 1882231) (-1129 "SINT.spad" 1880139 1880148 1881065 1881194) (-1128 "SIMPAN.spad" 1879867 1879876 1880129 1880134) (-1127 "SIG.spad" 1879197 1879206 1879857 1879862) (-1126 "SIGNRF.spad" 1878315 1878326 1879187 1879192) (-1125 "SIGNEF.spad" 1877594 1877611 1878305 1878310) (-1124 "SIGAST.spad" 1876979 1876988 1877584 1877589) (-1123 "SHP.spad" 1874907 1874922 1876935 1876940) (-1122 "SHDP.spad" 1864618 1864645 1865127 1865258) (-1121 "SGROUP.spad" 1864226 1864235 1864608 1864613) (-1120 "SGROUP.spad" 1863832 1863843 1864216 1864221) (-1119 "SGCF.spad" 1856971 1856980 1863822 1863827) (-1118 "SFRTCAT.spad" 1855901 1855918 1856939 1856966) (-1117 "SFRGCD.spad" 1854964 1854984 1855891 1855896) (-1116 "SFQCMPK.spad" 1849601 1849621 1854954 1854959) (-1115 "SFORT.spad" 1849040 1849054 1849591 1849596) (-1114 "SEXOF.spad" 1848883 1848923 1849030 1849035) (-1113 "SEX.spad" 1848775 1848784 1848873 1848878) (-1112 "SEXCAT.spad" 1846556 1846596 1848765 1848770) (-1111 "SET.spad" 1844880 1844891 1845977 1846016) (-1110 "SETMN.spad" 1843330 1843347 1844870 1844875) (-1109 "SETCAT.spad" 1842652 1842661 1843320 1843325) (-1108 "SETCAT.spad" 1841972 1841983 1842642 1842647) (-1107 "SETAGG.spad" 1838521 1838532 1841952 1841967) (-1106 "SETAGG.spad" 1835078 1835091 1838511 1838516) (-1105 "SEQAST.spad" 1834781 1834790 1835068 1835073) (-1104 "SEGXCAT.spad" 1833937 1833950 1834771 1834776) (-1103 "SEG.spad" 1833750 1833761 1833856 1833861) (-1102 "SEGCAT.spad" 1832675 1832686 1833740 1833745) (-1101 "SEGBIND.spad" 1832433 1832444 1832622 1832627) (-1100 "SEGBIND2.spad" 1832131 1832144 1832423 1832428) (-1099 "SEGAST.spad" 1831845 1831854 1832121 1832126) (-1098 "SEG2.spad" 1831280 1831293 1831801 1831806) (-1097 "SDVAR.spad" 1830556 1830567 1831270 1831275) (-1096 "SDPOL.spad" 1827982 1827993 1828273 1828400) (-1095 "SCPKG.spad" 1826071 1826082 1827972 1827977) (-1094 "SCOPE.spad" 1825224 1825233 1826061 1826066) (-1093 "SCACHE.spad" 1823920 1823931 1825214 1825219) (-1092 "SASTCAT.spad" 1823829 1823838 1823910 1823915) (-1091 "SAOS.spad" 1823701 1823710 1823819 1823824) (-1090 "SAERFFC.spad" 1823414 1823434 1823691 1823696) (-1089 "SAE.spad" 1821589 1821605 1822200 1822335) (-1088 "SAEFACT.spad" 1821290 1821310 1821579 1821584) (-1087 "RURPK.spad" 1818949 1818965 1821280 1821285) (-1086 "RULESET.spad" 1818402 1818426 1818939 1818944) (-1085 "RULE.spad" 1816642 1816666 1818392 1818397) (-1084 "RULECOLD.spad" 1816494 1816507 1816632 1816637) (-1083 "RTVALUE.spad" 1816229 1816238 1816484 1816489) (-1082 "RSTRCAST.spad" 1815946 1815955 1816219 1816224) (-1081 "RSETGCD.spad" 1812324 1812344 1815936 1815941) (-1080 "RSETCAT.spad" 1802260 1802277 1812292 1812319) (-1079 "RSETCAT.spad" 1792216 1792235 1802250 1802255) (-1078 "RSDCMPK.spad" 1790668 1790688 1792206 1792211) (-1077 "RRCC.spad" 1789052 1789082 1790658 1790663) (-1076 "RRCC.spad" 1787434 1787466 1789042 1789047) (-1075 "RPTAST.spad" 1787136 1787145 1787424 1787429) (-1074 "RPOLCAT.spad" 1766496 1766511 1787004 1787131) (-1073 "RPOLCAT.spad" 1745569 1745586 1766079 1766084) (-1072 "ROUTINE.spad" 1741452 1741461 1744216 1744243) (-1071 "ROMAN.spad" 1740780 1740789 1741318 1741447) (-1070 "ROIRC.spad" 1739860 1739892 1740770 1740775) (-1069 "RNS.spad" 1738763 1738772 1739762 1739855) (-1068 "RNS.spad" 1737752 1737763 1738753 1738758) (-1067 "RNG.spad" 1737487 1737496 1737742 1737747) (-1066 "RNGBIND.spad" 1736647 1736661 1737442 1737447) (-1065 "RMODULE.spad" 1736412 1736423 1736637 1736642) (-1064 "RMCAT2.spad" 1735832 1735889 1736402 1736407) (-1063 "RMATRIX.spad" 1734656 1734675 1734999 1735038) (-1062 "RMATCAT.spad" 1730235 1730266 1734612 1734651) (-1061 "RMATCAT.spad" 1725704 1725737 1730083 1730088) (-1060 "RLINSET.spad" 1725098 1725109 1725694 1725699) (-1059 "RINTERP.spad" 1724986 1725006 1725088 1725093) (-1058 "RING.spad" 1724456 1724465 1724966 1724981) (-1057 "RING.spad" 1723934 1723945 1724446 1724451) (-1056 "RIDIST.spad" 1723326 1723335 1723924 1723929) (-1055 "RGCHAIN.spad" 1721909 1721925 1722811 1722838) (-1054 "RGBCSPC.spad" 1721690 1721702 1721899 1721904) (-1053 "RGBCMDL.spad" 1721220 1721232 1721680 1721685) (-1052 "RF.spad" 1718862 1718873 1721210 1721215) (-1051 "RFFACTOR.spad" 1718324 1718335 1718852 1718857) (-1050 "RFFACT.spad" 1718059 1718071 1718314 1718319) (-1049 "RFDIST.spad" 1717055 1717064 1718049 1718054) (-1048 "RETSOL.spad" 1716474 1716487 1717045 1717050) (-1047 "RETRACT.spad" 1715902 1715913 1716464 1716469) (-1046 "RETRACT.spad" 1715328 1715341 1715892 1715897) (-1045 "RETAST.spad" 1715140 1715149 1715318 1715323) (-1044 "RESULT.spad" 1713200 1713209 1713787 1713814) (-1043 "RESRING.spad" 1712547 1712594 1713138 1713195) (-1042 "RESLATC.spad" 1711871 1711882 1712537 1712542) (-1041 "REPSQ.spad" 1711602 1711613 1711861 1711866) (-1040 "REP.spad" 1709156 1709165 1711592 1711597) (-1039 "REPDB.spad" 1708863 1708874 1709146 1709151) (-1038 "REP2.spad" 1698521 1698532 1708705 1708710) (-1037 "REP1.spad" 1692717 1692728 1698471 1698476) (-1036 "REGSET.spad" 1690514 1690531 1692363 1692390) (-1035 "REF.spad" 1689849 1689860 1690469 1690474) (-1034 "REDORDER.spad" 1689055 1689072 1689839 1689844) (-1033 "RECLOS.spad" 1687838 1687858 1688542 1688635) (-1032 "REALSOLV.spad" 1686978 1686987 1687828 1687833) (-1031 "REAL.spad" 1686850 1686859 1686968 1686973) (-1030 "REAL0Q.spad" 1684148 1684163 1686840 1686845) (-1029 "REAL0.spad" 1680992 1681007 1684138 1684143) (-1028 "RDUCEAST.spad" 1680713 1680722 1680982 1680987) (-1027 "RDIV.spad" 1680368 1680393 1680703 1680708) (-1026 "RDIST.spad" 1679935 1679946 1680358 1680363) (-1025 "RDETRS.spad" 1678799 1678817 1679925 1679930) (-1024 "RDETR.spad" 1676938 1676956 1678789 1678794) (-1023 "RDEEFS.spad" 1676037 1676054 1676928 1676933) (-1022 "RDEEF.spad" 1675047 1675064 1676027 1676032) (-1021 "RCFIELD.spad" 1672233 1672242 1674949 1675042) (-1020 "RCFIELD.spad" 1669505 1669516 1672223 1672228) (-1019 "RCAGG.spad" 1667433 1667444 1669495 1669500) (-1018 "RCAGG.spad" 1665288 1665301 1667352 1667357) (-1017 "RATRET.spad" 1664648 1664659 1665278 1665283) (-1016 "RATFACT.spad" 1664340 1664352 1664638 1664643) (-1015 "RANDSRC.spad" 1663659 1663668 1664330 1664335) (-1014 "RADUTIL.spad" 1663415 1663424 1663649 1663654) (-1013 "RADIX.spad" 1660336 1660350 1661882 1661975) (-1012 "RADFF.spad" 1658749 1658786 1658868 1659024) (-1011 "RADCAT.spad" 1658344 1658353 1658739 1658744) (-1010 "RADCAT.spad" 1657937 1657948 1658334 1658339) (-1009 "QUEUE.spad" 1657285 1657296 1657544 1657571) (-1008 "QUAT.spad" 1655866 1655877 1656209 1656274) (-1007 "QUATCT2.spad" 1655486 1655505 1655856 1655861) (-1006 "QUATCAT.spad" 1653656 1653667 1655416 1655481) (-1005 "QUATCAT.spad" 1651577 1651590 1653339 1653344) (-1004 "QUAGG.spad" 1650404 1650415 1651545 1651572) (-1003 "QQUTAST.spad" 1650172 1650181 1650394 1650399) (-1002 "QFORM.spad" 1649790 1649805 1650162 1650167) (-1001 "QFCAT.spad" 1648492 1648503 1649692 1649785) (-1000 "QFCAT.spad" 1646785 1646798 1647987 1647992) (-999 "QFCAT2.spad" 1646478 1646494 1646775 1646780) (-998 "QEQUAT.spad" 1646037 1646045 1646468 1646473) (-997 "QCMPACK.spad" 1640784 1640803 1646027 1646032) (-996 "QALGSET.spad" 1636863 1636895 1640698 1640703) (-995 "QALGSET2.spad" 1634859 1634877 1636853 1636858) (-994 "PWFFINTB.spad" 1632275 1632296 1634849 1634854) (-993 "PUSHVAR.spad" 1631614 1631633 1632265 1632270) (-992 "PTRANFN.spad" 1627742 1627752 1631604 1631609) (-991 "PTPACK.spad" 1624830 1624840 1627732 1627737) (-990 "PTFUNC2.spad" 1624653 1624667 1624820 1624825) (-989 "PTCAT.spad" 1623908 1623918 1624621 1624648) (-988 "PSQFR.spad" 1623215 1623239 1623898 1623903) (-987 "PSEUDLIN.spad" 1622101 1622111 1623205 1623210) (-986 "PSETPK.spad" 1607534 1607550 1621979 1621984) (-985 "PSETCAT.spad" 1601454 1601477 1607514 1607529) (-984 "PSETCAT.spad" 1595348 1595373 1601410 1601415) (-983 "PSCURVE.spad" 1594331 1594339 1595338 1595343) (-982 "PSCAT.spad" 1593114 1593143 1594229 1594326) (-981 "PSCAT.spad" 1591987 1592018 1593104 1593109) (-980 "PRTITION.spad" 1590685 1590693 1591977 1591982) (-979 "PRTDAST.spad" 1590404 1590412 1590675 1590680) (-978 "PRS.spad" 1579966 1579983 1590360 1590365) (-977 "PRQAGG.spad" 1579401 1579411 1579934 1579961) (-976 "PROPLOG.spad" 1578973 1578981 1579391 1579396) (-975 "PROPFUN2.spad" 1578596 1578609 1578963 1578968) (-974 "PROPFUN1.spad" 1577994 1578005 1578586 1578591) (-973 "PROPFRML.spad" 1576562 1576573 1577984 1577989) (-972 "PROPERTY.spad" 1576050 1576058 1576552 1576557) (-971 "PRODUCT.spad" 1573732 1573744 1574016 1574071) (-970 "PR.spad" 1572124 1572136 1572823 1572950) (-969 "PRINT.spad" 1571876 1571884 1572114 1572119) (-968 "PRIMES.spad" 1570129 1570139 1571866 1571871) (-967 "PRIMELT.spad" 1568210 1568224 1570119 1570124) (-966 "PRIMCAT.spad" 1567837 1567845 1568200 1568205) (-965 "PRIMARR.spad" 1566842 1566852 1567020 1567047) (-964 "PRIMARR2.spad" 1565609 1565621 1566832 1566837) (-963 "PREASSOC.spad" 1564991 1565003 1565599 1565604) (-962 "PPCURVE.spad" 1564128 1564136 1564981 1564986) (-961 "PORTNUM.spad" 1563903 1563911 1564118 1564123) (-960 "POLYROOT.spad" 1562752 1562774 1563859 1563864) (-959 "POLY.spad" 1560087 1560097 1560602 1560729) (-958 "POLYLIFT.spad" 1559352 1559375 1560077 1560082) (-957 "POLYCATQ.spad" 1557470 1557492 1559342 1559347) (-956 "POLYCAT.spad" 1550940 1550961 1557338 1557465) (-955 "POLYCAT.spad" 1543748 1543771 1550148 1550153) (-954 "POLY2UP.spad" 1543200 1543214 1543738 1543743) (-953 "POLY2.spad" 1542797 1542809 1543190 1543195) (-952 "POLUTIL.spad" 1541738 1541767 1542753 1542758) (-951 "POLTOPOL.spad" 1540486 1540501 1541728 1541733) (-950 "POINT.spad" 1539324 1539334 1539411 1539438) (-949 "PNTHEORY.spad" 1536026 1536034 1539314 1539319) (-948 "PMTOOLS.spad" 1534801 1534815 1536016 1536021) (-947 "PMSYM.spad" 1534350 1534360 1534791 1534796) (-946 "PMQFCAT.spad" 1533941 1533955 1534340 1534345) (-945 "PMPRED.spad" 1533420 1533434 1533931 1533936) (-944 "PMPREDFS.spad" 1532874 1532896 1533410 1533415) (-943 "PMPLCAT.spad" 1531954 1531972 1532806 1532811) (-942 "PMLSAGG.spad" 1531539 1531553 1531944 1531949) (-941 "PMKERNEL.spad" 1531118 1531130 1531529 1531534) (-940 "PMINS.spad" 1530698 1530708 1531108 1531113) (-939 "PMFS.spad" 1530275 1530293 1530688 1530693) (-938 "PMDOWN.spad" 1529565 1529579 1530265 1530270) (-937 "PMASS.spad" 1528575 1528583 1529555 1529560) (-936 "PMASSFS.spad" 1527542 1527558 1528565 1528570) (-935 "PLOTTOOL.spad" 1527322 1527330 1527532 1527537) (-934 "PLOT.spad" 1522245 1522253 1527312 1527317) (-933 "PLOT3D.spad" 1518709 1518717 1522235 1522240) (-932 "PLOT1.spad" 1517866 1517876 1518699 1518704) (-931 "PLEQN.spad" 1505156 1505183 1517856 1517861) (-930 "PINTERP.spad" 1504778 1504797 1505146 1505151) (-929 "PINTERPA.spad" 1504562 1504578 1504768 1504773) (-928 "PI.spad" 1504171 1504179 1504536 1504557) (-927 "PID.spad" 1503141 1503149 1504097 1504166) (-926 "PICOERCE.spad" 1502798 1502808 1503131 1503136) (-925 "PGROEB.spad" 1501399 1501413 1502788 1502793) (-924 "PGE.spad" 1493016 1493024 1501389 1501394) (-923 "PGCD.spad" 1491906 1491923 1493006 1493011) (-922 "PFRPAC.spad" 1491055 1491065 1491896 1491901) (-921 "PFR.spad" 1487718 1487728 1490957 1491050) (-920 "PFOTOOLS.spad" 1486976 1486992 1487708 1487713) (-919 "PFOQ.spad" 1486346 1486364 1486966 1486971) (-918 "PFO.spad" 1485765 1485792 1486336 1486341) (-917 "PF.spad" 1485339 1485351 1485570 1485663) (-916 "PFECAT.spad" 1483021 1483029 1485265 1485334) (-915 "PFECAT.spad" 1480731 1480741 1482977 1482982) (-914 "PFBRU.spad" 1478619 1478631 1480721 1480726) (-913 "PFBR.spad" 1476179 1476202 1478609 1478614) (-912 "PERM.spad" 1471864 1471874 1476009 1476024) (-911 "PERMGRP.spad" 1466626 1466636 1471854 1471859) (-910 "PERMCAT.spad" 1465184 1465194 1466606 1466621) (-909 "PERMAN.spad" 1463716 1463730 1465174 1465179) (-908 "PENDTREE.spad" 1463057 1463067 1463345 1463350) (-907 "PDRING.spad" 1461608 1461618 1463037 1463052) (-906 "PDRING.spad" 1460167 1460179 1461598 1461603) (-905 "PDEPROB.spad" 1459182 1459190 1460157 1460162) (-904 "PDEPACK.spad" 1453222 1453230 1459172 1459177) (-903 "PDECOMP.spad" 1452692 1452709 1453212 1453217) (-902 "PDECAT.spad" 1451048 1451056 1452682 1452687) (-901 "PCOMP.spad" 1450901 1450914 1451038 1451043) (-900 "PBWLB.spad" 1449489 1449506 1450891 1450896) (-899 "PATTERN.spad" 1444028 1444038 1449479 1449484) (-898 "PATTERN2.spad" 1443766 1443778 1444018 1444023) (-897 "PATTERN1.spad" 1442102 1442118 1443756 1443761) (-896 "PATRES.spad" 1439677 1439689 1442092 1442097) (-895 "PATRES2.spad" 1439349 1439363 1439667 1439672) (-894 "PATMATCH.spad" 1437546 1437577 1439057 1439062) (-893 "PATMAB.spad" 1436975 1436985 1437536 1437541) (-892 "PATLRES.spad" 1436061 1436075 1436965 1436970) (-891 "PATAB.spad" 1435825 1435835 1436051 1436056) (-890 "PARTPERM.spad" 1433833 1433841 1435815 1435820) (-889 "PARSURF.spad" 1433267 1433295 1433823 1433828) (-888 "PARSU2.spad" 1433064 1433080 1433257 1433262) (-887 "script-parser.spad" 1432584 1432592 1433054 1433059) (-886 "PARSCURV.spad" 1432018 1432046 1432574 1432579) (-885 "PARSC2.spad" 1431809 1431825 1432008 1432013) (-884 "PARPCURV.spad" 1431271 1431299 1431799 1431804) (-883 "PARPC2.spad" 1431062 1431078 1431261 1431266) (-882 "PARAMAST.spad" 1430190 1430198 1431052 1431057) (-881 "PAN2EXPR.spad" 1429602 1429610 1430180 1430185) (-880 "PALETTE.spad" 1428572 1428580 1429592 1429597) (-879 "PAIR.spad" 1427559 1427572 1428160 1428165) (-878 "PADICRC.spad" 1424893 1424911 1426064 1426157) (-877 "PADICRAT.spad" 1422908 1422920 1423129 1423222) (-876 "PADIC.spad" 1422603 1422615 1422834 1422903) (-875 "PADICCT.spad" 1421152 1421164 1422529 1422598) (-874 "PADEPAC.spad" 1419841 1419860 1421142 1421147) (-873 "PADE.spad" 1418593 1418609 1419831 1419836) (-872 "OWP.spad" 1417833 1417863 1418451 1418518) (-871 "OVERSET.spad" 1417406 1417414 1417823 1417828) (-870 "OVAR.spad" 1417187 1417210 1417396 1417401) (-869 "OUT.spad" 1416273 1416281 1417177 1417182) (-868 "OUTFORM.spad" 1405665 1405673 1416263 1416268) (-867 "OUTBFILE.spad" 1405083 1405091 1405655 1405660) (-866 "OUTBCON.spad" 1404089 1404097 1405073 1405078) (-865 "OUTBCON.spad" 1403093 1403103 1404079 1404084) (-864 "OSI.spad" 1402568 1402576 1403083 1403088) (-863 "OSGROUP.spad" 1402486 1402494 1402558 1402563) (-862 "ORTHPOL.spad" 1400971 1400981 1402403 1402408) (-861 "OREUP.spad" 1400424 1400452 1400651 1400690) (-860 "ORESUP.spad" 1399725 1399749 1400104 1400143) (-859 "OREPCTO.spad" 1397582 1397594 1399645 1399650) (-858 "OREPCAT.spad" 1391729 1391739 1397538 1397577) (-857 "OREPCAT.spad" 1385766 1385778 1391577 1391582) (-856 "ORDSET.spad" 1384938 1384946 1385756 1385761) (-855 "ORDSET.spad" 1384108 1384118 1384928 1384933) (-854 "ORDRING.spad" 1383498 1383506 1384088 1384103) (-853 "ORDRING.spad" 1382896 1382906 1383488 1383493) (-852 "ORDMON.spad" 1382751 1382759 1382886 1382891) (-851 "ORDFUNS.spad" 1381883 1381899 1382741 1382746) (-850 "ORDFIN.spad" 1381703 1381711 1381873 1381878) (-849 "ORDCOMP.spad" 1380168 1380178 1381250 1381279) (-848 "ORDCOMP2.spad" 1379461 1379473 1380158 1380163) (-847 "OPTPROB.spad" 1378099 1378107 1379451 1379456) (-846 "OPTPACK.spad" 1370508 1370516 1378089 1378094) (-845 "OPTCAT.spad" 1368187 1368195 1370498 1370503) (-844 "OPSIG.spad" 1367841 1367849 1368177 1368182) (-843 "OPQUERY.spad" 1367390 1367398 1367831 1367836) (-842 "OP.spad" 1367132 1367142 1367212 1367279) (-841 "OPERCAT.spad" 1366598 1366608 1367122 1367127) (-840 "OPERCAT.spad" 1366062 1366074 1366588 1366593) (-839 "ONECOMP.spad" 1364807 1364817 1365609 1365638) (-838 "ONECOMP2.spad" 1364231 1364243 1364797 1364802) (-837 "OMSERVER.spad" 1363237 1363245 1364221 1364226) (-836 "OMSAGG.spad" 1363025 1363035 1363193 1363232) (-835 "OMPKG.spad" 1361641 1361649 1363015 1363020) (-834 "OM.spad" 1360614 1360622 1361631 1361636) (-833 "OMLO.spad" 1360039 1360051 1360500 1360539) (-832 "OMEXPR.spad" 1359873 1359883 1360029 1360034) (-831 "OMERR.spad" 1359418 1359426 1359863 1359868) (-830 "OMERRK.spad" 1358452 1358460 1359408 1359413) (-829 "OMENC.spad" 1357796 1357804 1358442 1358447) (-828 "OMDEV.spad" 1352105 1352113 1357786 1357791) (-827 "OMCONN.spad" 1351514 1351522 1352095 1352100) (-826 "OINTDOM.spad" 1351277 1351285 1351440 1351509) (-825 "OFMONOID.spad" 1349400 1349410 1351233 1351238) (-824 "ODVAR.spad" 1348661 1348671 1349390 1349395) (-823 "ODR.spad" 1348305 1348331 1348473 1348622) (-822 "ODPOL.spad" 1345687 1345697 1346027 1346154) (-821 "ODP.spad" 1335534 1335554 1335907 1336038) (-820 "ODETOOLS.spad" 1334183 1334202 1335524 1335529) (-819 "ODESYS.spad" 1331877 1331894 1334173 1334178) (-818 "ODERTRIC.spad" 1327886 1327903 1331834 1331839) (-817 "ODERED.spad" 1327285 1327309 1327876 1327881) (-816 "ODERAT.spad" 1324900 1324917 1327275 1327280) (-815 "ODEPRRIC.spad" 1321937 1321959 1324890 1324895) (-814 "ODEPROB.spad" 1321194 1321202 1321927 1321932) (-813 "ODEPRIM.spad" 1318528 1318550 1321184 1321189) (-812 "ODEPAL.spad" 1317914 1317938 1318518 1318523) (-811 "ODEPACK.spad" 1304580 1304588 1317904 1317909) (-810 "ODEINT.spad" 1304015 1304031 1304570 1304575) (-809 "ODEIFTBL.spad" 1301410 1301418 1304005 1304010) (-808 "ODEEF.spad" 1296901 1296917 1301400 1301405) (-807 "ODECONST.spad" 1296438 1296456 1296891 1296896) (-806 "ODECAT.spad" 1295036 1295044 1296428 1296433) (-805 "OCT.spad" 1293172 1293182 1293886 1293925) (-804 "OCTCT2.spad" 1292818 1292839 1293162 1293167) (-803 "OC.spad" 1290614 1290624 1292774 1292813) (-802 "OC.spad" 1288135 1288147 1290297 1290302) (-801 "OCAMON.spad" 1287983 1287991 1288125 1288130) (-800 "OASGP.spad" 1287798 1287806 1287973 1287978) (-799 "OAMONS.spad" 1287320 1287328 1287788 1287793) (-798 "OAMON.spad" 1287181 1287189 1287310 1287315) (-797 "OAGROUP.spad" 1287043 1287051 1287171 1287176) (-796 "NUMTUBE.spad" 1286634 1286650 1287033 1287038) (-795 "NUMQUAD.spad" 1274610 1274618 1286624 1286629) (-794 "NUMODE.spad" 1265964 1265972 1274600 1274605) (-793 "NUMINT.spad" 1263530 1263538 1265954 1265959) (-792 "NUMFMT.spad" 1262370 1262378 1263520 1263525) (-791 "NUMERIC.spad" 1254484 1254494 1262175 1262180) (-790 "NTSCAT.spad" 1252992 1253008 1254452 1254479) (-789 "NTPOLFN.spad" 1252543 1252553 1252909 1252914) (-788 "NSUP.spad" 1245589 1245599 1250129 1250282) (-787 "NSUP2.spad" 1244981 1244993 1245579 1245584) (-786 "NSMP.spad" 1241211 1241230 1241519 1241646) (-785 "NREP.spad" 1239589 1239603 1241201 1241206) (-784 "NPCOEF.spad" 1238835 1238855 1239579 1239584) (-783 "NORMRETR.spad" 1238433 1238472 1238825 1238830) (-782 "NORMPK.spad" 1236335 1236354 1238423 1238428) (-781 "NORMMA.spad" 1236023 1236049 1236325 1236330) (-780 "NONE.spad" 1235764 1235772 1236013 1236018) (-779 "NONE1.spad" 1235440 1235450 1235754 1235759) (-778 "NODE1.spad" 1234927 1234943 1235430 1235435) (-777 "NNI.spad" 1233822 1233830 1234901 1234922) (-776 "NLINSOL.spad" 1232448 1232458 1233812 1233817) (-775 "NIPROB.spad" 1230989 1230997 1232438 1232443) (-774 "NFINTBAS.spad" 1228549 1228566 1230979 1230984) (-773 "NETCLT.spad" 1228523 1228534 1228539 1228544) (-772 "NCODIV.spad" 1226739 1226755 1228513 1228518) (-771 "NCNTFRAC.spad" 1226381 1226395 1226729 1226734) (-770 "NCEP.spad" 1224547 1224561 1226371 1226376) (-769 "NASRING.spad" 1224143 1224151 1224537 1224542) (-768 "NASRING.spad" 1223737 1223747 1224133 1224138) (-767 "NARNG.spad" 1223089 1223097 1223727 1223732) (-766 "NARNG.spad" 1222439 1222449 1223079 1223084) (-765 "NAGSP.spad" 1221516 1221524 1222429 1222434) (-764 "NAGS.spad" 1211177 1211185 1221506 1221511) (-763 "NAGF07.spad" 1209608 1209616 1211167 1211172) (-762 "NAGF04.spad" 1204010 1204018 1209598 1209603) (-761 "NAGF02.spad" 1198079 1198087 1204000 1204005) (-760 "NAGF01.spad" 1193840 1193848 1198069 1198074) (-759 "NAGE04.spad" 1187540 1187548 1193830 1193835) (-758 "NAGE02.spad" 1178200 1178208 1187530 1187535) (-757 "NAGE01.spad" 1174202 1174210 1178190 1178195) (-756 "NAGD03.spad" 1172206 1172214 1174192 1174197) (-755 "NAGD02.spad" 1164953 1164961 1172196 1172201) (-754 "NAGD01.spad" 1159246 1159254 1164943 1164948) (-753 "NAGC06.spad" 1155121 1155129 1159236 1159241) (-752 "NAGC05.spad" 1153622 1153630 1155111 1155116) (-751 "NAGC02.spad" 1152889 1152897 1153612 1153617) (-750 "NAALG.spad" 1152430 1152440 1152857 1152884) (-749 "NAALG.spad" 1151991 1152003 1152420 1152425) (-748 "MULTSQFR.spad" 1148949 1148966 1151981 1151986) (-747 "MULTFACT.spad" 1148332 1148349 1148939 1148944) (-746 "MTSCAT.spad" 1146426 1146447 1148230 1148327) (-745 "MTHING.spad" 1146085 1146095 1146416 1146421) (-744 "MSYSCMD.spad" 1145519 1145527 1146075 1146080) (-743 "MSET.spad" 1143477 1143487 1145225 1145264) (-742 "MSETAGG.spad" 1143322 1143332 1143445 1143472) (-741 "MRING.spad" 1140299 1140311 1143030 1143097) (-740 "MRF2.spad" 1139869 1139883 1140289 1140294) (-739 "MRATFAC.spad" 1139415 1139432 1139859 1139864) (-738 "MPRFF.spad" 1137455 1137474 1139405 1139410) (-737 "MPOLY.spad" 1134926 1134941 1135285 1135412) (-736 "MPCPF.spad" 1134190 1134209 1134916 1134921) (-735 "MPC3.spad" 1134007 1134047 1134180 1134185) (-734 "MPC2.spad" 1133653 1133686 1133997 1134002) (-733 "MONOTOOL.spad" 1132004 1132021 1133643 1133648) (-732 "MONOID.spad" 1131323 1131331 1131994 1131999) (-731 "MONOID.spad" 1130640 1130650 1131313 1131318) (-730 "MONOGEN.spad" 1129388 1129401 1130500 1130635) (-729 "MONOGEN.spad" 1128158 1128173 1129272 1129277) (-728 "MONADWU.spad" 1126188 1126196 1128148 1128153) (-727 "MONADWU.spad" 1124216 1124226 1126178 1126183) (-726 "MONAD.spad" 1123376 1123384 1124206 1124211) (-725 "MONAD.spad" 1122534 1122544 1123366 1123371) (-724 "MOEBIUS.spad" 1121270 1121284 1122514 1122529) (-723 "MODULE.spad" 1121140 1121150 1121238 1121265) (-722 "MODULE.spad" 1121030 1121042 1121130 1121135) (-721 "MODRING.spad" 1120365 1120404 1121010 1121025) (-720 "MODOP.spad" 1119030 1119042 1120187 1120254) (-719 "MODMONOM.spad" 1118761 1118779 1119020 1119025) (-718 "MODMON.spad" 1115556 1115572 1116275 1116428) (-717 "MODFIELD.spad" 1114918 1114957 1115458 1115551) (-716 "MMLFORM.spad" 1113778 1113786 1114908 1114913) (-715 "MMAP.spad" 1113520 1113554 1113768 1113773) (-714 "MLO.spad" 1111979 1111989 1113476 1113515) (-713 "MLIFT.spad" 1110591 1110608 1111969 1111974) (-712 "MKUCFUNC.spad" 1110126 1110144 1110581 1110586) (-711 "MKRECORD.spad" 1109730 1109743 1110116 1110121) (-710 "MKFUNC.spad" 1109137 1109147 1109720 1109725) (-709 "MKFLCFN.spad" 1108105 1108115 1109127 1109132) (-708 "MKBCFUNC.spad" 1107600 1107618 1108095 1108100) (-707 "MINT.spad" 1107039 1107047 1107502 1107595) (-706 "MHROWRED.spad" 1105550 1105560 1107029 1107034) (-705 "MFLOAT.spad" 1104070 1104078 1105440 1105545) (-704 "MFINFACT.spad" 1103470 1103492 1104060 1104065) (-703 "MESH.spad" 1101252 1101260 1103460 1103465) (-702 "MDDFACT.spad" 1099463 1099473 1101242 1101247) (-701 "MDAGG.spad" 1098754 1098764 1099443 1099458) (-700 "MCMPLX.spad" 1094765 1094773 1095379 1095580) (-699 "MCDEN.spad" 1093975 1093987 1094755 1094760) (-698 "MCALCFN.spad" 1091097 1091123 1093965 1093970) (-697 "MAYBE.spad" 1090381 1090392 1091087 1091092) (-696 "MATSTOR.spad" 1087689 1087699 1090371 1090376) (-695 "MATRIX.spad" 1086393 1086403 1086877 1086904) (-694 "MATLIN.spad" 1083737 1083761 1086277 1086282) (-693 "MATCAT.spad" 1075466 1075488 1083705 1083732) (-692 "MATCAT.spad" 1067067 1067091 1075308 1075313) (-691 "MATCAT2.spad" 1066349 1066397 1067057 1067062) (-690 "MAPPKG3.spad" 1065264 1065278 1066339 1066344) (-689 "MAPPKG2.spad" 1064602 1064614 1065254 1065259) (-688 "MAPPKG1.spad" 1063430 1063440 1064592 1064597) (-687 "MAPPAST.spad" 1062745 1062753 1063420 1063425) (-686 "MAPHACK3.spad" 1062557 1062571 1062735 1062740) (-685 "MAPHACK2.spad" 1062326 1062338 1062547 1062552) (-684 "MAPHACK1.spad" 1061970 1061980 1062316 1062321) (-683 "MAGMA.spad" 1059760 1059777 1061960 1061965) (-682 "MACROAST.spad" 1059339 1059347 1059750 1059755) (-681 "M3D.spad" 1057059 1057069 1058717 1058722) (-680 "LZSTAGG.spad" 1054297 1054307 1057049 1057054) (-679 "LZSTAGG.spad" 1051533 1051545 1054287 1054292) (-678 "LWORD.spad" 1048238 1048255 1051523 1051528) (-677 "LSTAST.spad" 1048022 1048030 1048228 1048233) (-676 "LSQM.spad" 1046252 1046266 1046646 1046697) (-675 "LSPP.spad" 1045787 1045804 1046242 1046247) (-674 "LSMP.spad" 1044637 1044665 1045777 1045782) (-673 "LSMP1.spad" 1042455 1042469 1044627 1044632) (-672 "LSAGG.spad" 1042124 1042134 1042423 1042450) (-671 "LSAGG.spad" 1041813 1041825 1042114 1042119) (-670 "LPOLY.spad" 1040767 1040786 1041669 1041738) (-669 "LPEFRAC.spad" 1040038 1040048 1040757 1040762) (-668 "LO.spad" 1039439 1039453 1039972 1039999) (-667 "LOGIC.spad" 1039041 1039049 1039429 1039434) (-666 "LOGIC.spad" 1038641 1038651 1039031 1039036) (-665 "LODOOPS.spad" 1037571 1037583 1038631 1038636) (-664 "LODO.spad" 1036955 1036971 1037251 1037290) (-663 "LODOF.spad" 1036001 1036018 1036912 1036917) (-662 "LODOCAT.spad" 1034667 1034677 1035957 1035996) (-661 "LODOCAT.spad" 1033331 1033343 1034623 1034628) (-660 "LODO2.spad" 1032604 1032616 1033011 1033050) (-659 "LODO1.spad" 1032004 1032014 1032284 1032323) (-658 "LODEEF.spad" 1030806 1030824 1031994 1031999) (-657 "LNAGG.spad" 1026953 1026963 1030796 1030801) (-656 "LNAGG.spad" 1023064 1023076 1026909 1026914) (-655 "LMOPS.spad" 1019832 1019849 1023054 1023059) (-654 "LMODULE.spad" 1019600 1019610 1019822 1019827) (-653 "LMDICT.spad" 1018887 1018897 1019151 1019178) (-652 "LLINSET.spad" 1018284 1018294 1018877 1018882) (-651 "LITERAL.spad" 1018190 1018201 1018274 1018279) (-650 "LIST.spad" 1015925 1015935 1017337 1017364) (-649 "LIST3.spad" 1015236 1015250 1015915 1015920) (-648 "LIST2.spad" 1013938 1013950 1015226 1015231) (-647 "LIST2MAP.spad" 1010841 1010853 1013928 1013933) (-646 "LINSET.spad" 1010463 1010473 1010831 1010836) (-645 "LINEXP.spad" 1009897 1009907 1010443 1010458) (-644 "LINDEP.spad" 1008706 1008718 1009809 1009814) (-643 "LIMITRF.spad" 1006634 1006644 1008696 1008701) (-642 "LIMITPS.spad" 1005537 1005550 1006624 1006629) (-641 "LIE.spad" 1003553 1003565 1004827 1004972) (-640 "LIECAT.spad" 1003029 1003039 1003479 1003548) (-639 "LIECAT.spad" 1002533 1002545 1002985 1002990) (-638 "LIB.spad" 1000746 1000754 1001192 1001207) (-637 "LGROBP.spad" 998099 998118 1000736 1000741) (-636 "LF.spad" 997054 997070 998089 998094) (-635 "LFCAT.spad" 996113 996121 997044 997049) (-634 "LEXTRIPK.spad" 991616 991631 996103 996108) (-633 "LEXP.spad" 989619 989646 991596 991611) (-632 "LETAST.spad" 989318 989326 989609 989614) (-631 "LEADCDET.spad" 987716 987733 989308 989313) (-630 "LAZM3PK.spad" 986420 986442 987706 987711) (-629 "LAUPOL.spad" 985113 985126 986013 986082) (-628 "LAPLACE.spad" 984696 984712 985103 985108) (-627 "LA.spad" 984136 984150 984618 984657) (-626 "LALG.spad" 983912 983922 984116 984131) (-625 "LALG.spad" 983696 983708 983902 983907) (-624 "KVTFROM.spad" 983431 983441 983686 983691) (-623 "KTVLOGIC.spad" 982943 982951 983421 983426) (-622 "KRCFROM.spad" 982681 982691 982933 982938) (-621 "KOVACIC.spad" 981404 981421 982671 982676) (-620 "KONVERT.spad" 981126 981136 981394 981399) (-619 "KOERCE.spad" 980863 980873 981116 981121) (-618 "KERNEL.spad" 979518 979528 980647 980652) (-617 "KERNEL2.spad" 979221 979233 979508 979513) (-616 "KDAGG.spad" 978330 978352 979201 979216) (-615 "KDAGG.spad" 977447 977471 978320 978325) (-614 "KAFILE.spad" 976410 976426 976645 976672) (-613 "JORDAN.spad" 974239 974251 975700 975845) (-612 "JOINAST.spad" 973933 973941 974229 974234) (-611 "JAVACODE.spad" 973799 973807 973923 973928) (-610 "IXAGG.spad" 971932 971956 973789 973794) (-609 "IXAGG.spad" 969920 969946 971779 971784) (-608 "IVECTOR.spad" 968690 968705 968845 968872) (-607 "ITUPLE.spad" 967851 967861 968680 968685) (-606 "ITRIGMNP.spad" 966690 966709 967841 967846) (-605 "ITFUN3.spad" 966196 966210 966680 966685) (-604 "ITFUN2.spad" 965940 965952 966186 966191) (-603 "ITFORM.spad" 965295 965303 965930 965935) (-602 "ITAYLOR.spad" 963289 963304 965159 965256) (-601 "ISUPS.spad" 955726 955741 962263 962360) (-600 "ISUMP.spad" 955227 955243 955716 955721) (-599 "ISTRING.spad" 954315 954328 954396 954423) (-598 "ISAST.spad" 954034 954042 954305 954310) (-597 "IRURPK.spad" 952751 952770 954024 954029) (-596 "IRSN.spad" 950723 950731 952741 952746) (-595 "IRRF2F.spad" 949208 949218 950679 950684) (-594 "IRREDFFX.spad" 948809 948820 949198 949203) (-593 "IROOT.spad" 947148 947158 948799 948804) (-592 "IR.spad" 944949 944963 947003 947030) (-591 "IRFORM.spad" 944273 944281 944939 944944) (-590 "IR2.spad" 943301 943317 944263 944268) (-589 "IR2F.spad" 942507 942523 943291 943296) (-588 "IPRNTPK.spad" 942267 942275 942497 942502) (-587 "IPF.spad" 941832 941844 942072 942165) (-586 "IPADIC.spad" 941593 941619 941758 941827) (-585 "IP4ADDR.spad" 941150 941158 941583 941588) (-584 "IOMODE.spad" 940672 940680 941140 941145) (-583 "IOBFILE.spad" 940033 940041 940662 940667) (-582 "IOBCON.spad" 939898 939906 940023 940028) (-581 "INVLAPLA.spad" 939547 939563 939888 939893) (-580 "INTTR.spad" 932929 932946 939537 939542) (-579 "INTTOOLS.spad" 930684 930700 932503 932508) (-578 "INTSLPE.spad" 930004 930012 930674 930679) (-577 "INTRVL.spad" 929570 929580 929918 929999) (-576 "INTRF.spad" 927994 928008 929560 929565) (-575 "INTRET.spad" 927426 927436 927984 927989) (-574 "INTRAT.spad" 926153 926170 927416 927421) (-573 "INTPM.spad" 924538 924554 925796 925801) (-572 "INTPAF.spad" 922402 922420 924470 924475) (-571 "INTPACK.spad" 912776 912784 922392 922397) (-570 "INT.spad" 912224 912232 912630 912771) (-569 "INTHERTR.spad" 911498 911515 912214 912219) (-568 "INTHERAL.spad" 911168 911192 911488 911493) (-567 "INTHEORY.spad" 907607 907615 911158 911163) (-566 "INTG0.spad" 901340 901358 907539 907544) (-565 "INTFTBL.spad" 895369 895377 901330 901335) (-564 "INTFACT.spad" 894428 894438 895359 895364) (-563 "INTEF.spad" 892813 892829 894418 894423) (-562 "INTDOM.spad" 891436 891444 892739 892808) (-561 "INTDOM.spad" 890121 890131 891426 891431) (-560 "INTCAT.spad" 888380 888390 890035 890116) (-559 "INTBIT.spad" 887887 887895 888370 888375) (-558 "INTALG.spad" 887075 887102 887877 887882) (-557 "INTAF.spad" 886575 886591 887065 887070) (-556 "INTABL.spad" 885093 885124 885256 885283) (-555 "INT8.spad" 884973 884981 885083 885088) (-554 "INT64.spad" 884852 884860 884963 884968) (-553 "INT32.spad" 884731 884739 884842 884847) (-552 "INT16.spad" 884610 884618 884721 884726) (-551 "INS.spad" 882113 882121 884512 884605) (-550 "INS.spad" 879702 879712 882103 882108) (-549 "INPSIGN.spad" 879150 879163 879692 879697) (-548 "INPRODPF.spad" 878246 878265 879140 879145) (-547 "INPRODFF.spad" 877334 877358 878236 878241) (-546 "INNMFACT.spad" 876309 876326 877324 877329) (-545 "INMODGCD.spad" 875797 875827 876299 876304) (-544 "INFSP.spad" 874094 874116 875787 875792) (-543 "INFPROD0.spad" 873174 873193 874084 874089) (-542 "INFORM.spad" 870373 870381 873164 873169) (-541 "INFORM1.spad" 869998 870008 870363 870368) (-540 "INFINITY.spad" 869550 869558 869988 869993) (-539 "INETCLTS.spad" 869527 869535 869540 869545) (-538 "INEP.spad" 868065 868087 869517 869522) (-537 "INDE.spad" 867794 867811 868055 868060) (-536 "INCRMAPS.spad" 867215 867225 867784 867789) (-535 "INBFILE.spad" 866287 866295 867205 867210) (-534 "INBFF.spad" 862081 862092 866277 866282) (-533 "INBCON.spad" 860371 860379 862071 862076) (-532 "INBCON.spad" 858659 858669 860361 860366) (-531 "INAST.spad" 858320 858328 858649 858654) (-530 "IMPTAST.spad" 858028 858036 858310 858315) (-529 "IMATRIX.spad" 856973 856999 857485 857512) (-528 "IMATQF.spad" 856067 856111 856929 856934) (-527 "IMATLIN.spad" 854672 854696 856023 856028) (-526 "ILIST.spad" 853330 853345 853855 853882) (-525 "IIARRAY2.spad" 852718 852756 852937 852964) (-524 "IFF.spad" 852128 852144 852399 852492) (-523 "IFAST.spad" 851742 851750 852118 852123) (-522 "IFARRAY.spad" 849235 849250 850925 850952) (-521 "IFAMON.spad" 849097 849114 849191 849196) (-520 "IEVALAB.spad" 848502 848514 849087 849092) (-519 "IEVALAB.spad" 847905 847919 848492 848497) (-518 "IDPO.spad" 847703 847715 847895 847900) (-517 "IDPOAMS.spad" 847459 847471 847693 847698) (-516 "IDPOAM.spad" 847179 847191 847449 847454) (-515 "IDPC.spad" 846117 846129 847169 847174) (-514 "IDPAM.spad" 845862 845874 846107 846112) (-513 "IDPAG.spad" 845609 845621 845852 845857) (-512 "IDENT.spad" 845259 845267 845599 845604) (-511 "IDECOMP.spad" 842498 842516 845249 845254) (-510 "IDEAL.spad" 837447 837486 842433 842438) (-509 "ICDEN.spad" 836636 836652 837437 837442) (-508 "ICARD.spad" 835827 835835 836626 836631) (-507 "IBPTOOLS.spad" 834434 834451 835817 835822) (-506 "IBITS.spad" 833637 833650 834070 834097) (-505 "IBATOOL.spad" 830614 830633 833627 833632) (-504 "IBACHIN.spad" 829121 829136 830604 830609) (-503 "IARRAY2.spad" 828109 828135 828728 828755) (-502 "IARRAY1.spad" 827154 827169 827292 827319) (-501 "IAN.spad" 825377 825385 826970 827063) (-500 "IALGFACT.spad" 824980 825013 825367 825372) (-499 "HYPCAT.spad" 824404 824412 824970 824975) (-498 "HYPCAT.spad" 823826 823836 824394 824399) (-497 "HOSTNAME.spad" 823634 823642 823816 823821) (-496 "HOMOTOP.spad" 823377 823387 823624 823629) (-495 "HOAGG.spad" 820659 820669 823367 823372) (-494 "HOAGG.spad" 817716 817728 820426 820431) (-493 "HEXADEC.spad" 815818 815826 816183 816276) (-492 "HEUGCD.spad" 814853 814864 815808 815813) (-491 "HELLFDIV.spad" 814443 814467 814843 814848) (-490 "HEAP.spad" 813835 813845 814050 814077) (-489 "HEADAST.spad" 813368 813376 813825 813830) (-488 "HDP.spad" 803211 803227 803588 803719) (-487 "HDMP.spad" 800425 800440 801041 801168) (-486 "HB.spad" 798676 798684 800415 800420) (-485 "HASHTBL.spad" 797146 797177 797357 797384) (-484 "HASAST.spad" 796862 796870 797136 797141) (-483 "HACKPI.spad" 796353 796361 796764 796857) (-482 "GTSET.spad" 795292 795308 795999 796026) (-481 "GSTBL.spad" 793811 793846 793985 794000) (-480 "GSERIES.spad" 790982 791009 791943 792092) (-479 "GROUP.spad" 790255 790263 790962 790977) (-478 "GROUP.spad" 789536 789546 790245 790250) (-477 "GROEBSOL.spad" 788030 788051 789526 789531) (-476 "GRMOD.spad" 786601 786613 788020 788025) (-475 "GRMOD.spad" 785170 785184 786591 786596) (-474 "GRIMAGE.spad" 778059 778067 785160 785165) (-473 "GRDEF.spad" 776438 776446 778049 778054) (-472 "GRAY.spad" 774901 774909 776428 776433) (-471 "GRALG.spad" 773978 773990 774891 774896) (-470 "GRALG.spad" 773053 773067 773968 773973) (-469 "GPOLSET.spad" 772507 772530 772735 772762) (-468 "GOSPER.spad" 771776 771794 772497 772502) (-467 "GMODPOL.spad" 770924 770951 771744 771771) (-466 "GHENSEL.spad" 770007 770021 770914 770919) (-465 "GENUPS.spad" 766300 766313 769997 770002) (-464 "GENUFACT.spad" 765877 765887 766290 766295) (-463 "GENPGCD.spad" 765463 765480 765867 765872) (-462 "GENMFACT.spad" 764915 764934 765453 765458) (-461 "GENEEZ.spad" 762866 762879 764905 764910) (-460 "GDMP.spad" 759922 759939 760696 760823) (-459 "GCNAALG.spad" 753845 753872 759716 759783) (-458 "GCDDOM.spad" 753021 753029 753771 753840) (-457 "GCDDOM.spad" 752259 752269 753011 753016) (-456 "GB.spad" 749785 749823 752215 752220) (-455 "GBINTERN.spad" 745805 745843 749775 749780) (-454 "GBF.spad" 741572 741610 745795 745800) (-453 "GBEUCLID.spad" 739454 739492 741562 741567) (-452 "GAUSSFAC.spad" 738767 738775 739444 739449) (-451 "GALUTIL.spad" 737093 737103 738723 738728) (-450 "GALPOLYU.spad" 735547 735560 737083 737088) (-449 "GALFACTU.spad" 733720 733739 735537 735542) (-448 "GALFACT.spad" 723909 723920 733710 733715) (-447 "FVFUN.spad" 720932 720940 723899 723904) (-446 "FVC.spad" 719984 719992 720922 720927) (-445 "FUNDESC.spad" 719662 719670 719974 719979) (-444 "FUNCTION.spad" 719511 719523 719652 719657) (-443 "FT.spad" 717808 717816 719501 719506) (-442 "FTEM.spad" 716973 716981 717798 717803) (-441 "FSUPFACT.spad" 715873 715892 716909 716914) (-440 "FST.spad" 713959 713967 715863 715868) (-439 "FSRED.spad" 713439 713455 713949 713954) (-438 "FSPRMELT.spad" 712321 712337 713396 713401) (-437 "FSPECF.spad" 710412 710428 712311 712316) (-436 "FS.spad" 704680 704690 710187 710407) (-435 "FS.spad" 698726 698738 704235 704240) (-434 "FSINT.spad" 698386 698402 698716 698721) (-433 "FSERIES.spad" 697577 697589 698206 698305) (-432 "FSCINT.spad" 696894 696910 697567 697572) (-431 "FSAGG.spad" 696011 696021 696850 696889) (-430 "FSAGG.spad" 695090 695102 695931 695936) (-429 "FSAGG2.spad" 693833 693849 695080 695085) (-428 "FS2UPS.spad" 688324 688358 693823 693828) (-427 "FS2.spad" 687971 687987 688314 688319) (-426 "FS2EXPXP.spad" 687096 687119 687961 687966) (-425 "FRUTIL.spad" 686050 686060 687086 687091) (-424 "FR.spad" 679618 679628 684926 684995) (-423 "FRNAALG.spad" 674887 674897 679560 679613) (-422 "FRNAALG.spad" 670168 670180 674843 674848) (-421 "FRNAAF2.spad" 669624 669642 670158 670163) (-420 "FRMOD.spad" 669034 669064 669555 669560) (-419 "FRIDEAL.spad" 668259 668280 669014 669029) (-418 "FRIDEAL2.spad" 667863 667895 668249 668254) (-417 "FRETRCT.spad" 667374 667384 667853 667858) (-416 "FRETRCT.spad" 666751 666763 667232 667237) (-415 "FRAMALG.spad" 665099 665112 666707 666746) (-414 "FRAMALG.spad" 663479 663494 665089 665094) (-413 "FRAC.spad" 660578 660588 660981 661154) (-412 "FRAC2.spad" 660183 660195 660568 660573) (-411 "FR2.spad" 659519 659531 660173 660178) (-410 "FPS.spad" 656334 656342 659409 659514) (-409 "FPS.spad" 653177 653187 656254 656259) (-408 "FPC.spad" 652223 652231 653079 653172) (-407 "FPC.spad" 651355 651365 652213 652218) (-406 "FPATMAB.spad" 651117 651127 651345 651350) (-405 "FPARFRAC.spad" 649604 649621 651107 651112) (-404 "FORTRAN.spad" 648110 648153 649594 649599) (-403 "FORT.spad" 647059 647067 648100 648105) (-402 "FORTFN.spad" 644229 644237 647049 647054) (-401 "FORTCAT.spad" 643913 643921 644219 644224) (-400 "FORMULA.spad" 641387 641395 643903 643908) (-399 "FORMULA1.spad" 640866 640876 641377 641382) (-398 "FORDER.spad" 640557 640581 640856 640861) (-397 "FOP.spad" 639758 639766 640547 640552) (-396 "FNLA.spad" 639182 639204 639726 639753) (-395 "FNCAT.spad" 637777 637785 639172 639177) (-394 "FNAME.spad" 637669 637677 637767 637772) (-393 "FMTC.spad" 637467 637475 637595 637664) (-392 "FMONOID.spad" 637132 637142 637423 637428) (-391 "FMONCAT.spad" 634285 634295 637122 637127) (-390 "FM.spad" 633980 633992 634219 634246) (-389 "FMFUN.spad" 631010 631018 633970 633975) (-388 "FMC.spad" 630062 630070 631000 631005) (-387 "FMCAT.spad" 627730 627748 630030 630057) (-386 "FM1.spad" 627087 627099 627664 627691) (-385 "FLOATRP.spad" 624822 624836 627077 627082) (-384 "FLOAT.spad" 618136 618144 624688 624817) (-383 "FLOATCP.spad" 615567 615581 618126 618131) (-382 "FLINEXP.spad" 615279 615289 615547 615562) (-381 "FLINEXP.spad" 614945 614957 615215 615220) (-380 "FLASORT.spad" 614271 614283 614935 614940) (-379 "FLALG.spad" 611917 611936 614197 614266) (-378 "FLAGG.spad" 608959 608969 611897 611912) (-377 "FLAGG.spad" 605902 605914 608842 608847) (-376 "FLAGG2.spad" 604627 604643 605892 605897) (-375 "FINRALG.spad" 602688 602701 604583 604622) (-374 "FINRALG.spad" 600675 600690 602572 602577) (-373 "FINITE.spad" 599827 599835 600665 600670) (-372 "FINAALG.spad" 588948 588958 599769 599822) (-371 "FINAALG.spad" 578081 578093 588904 588909) (-370 "FILE.spad" 577664 577674 578071 578076) (-369 "FILECAT.spad" 576190 576207 577654 577659) (-368 "FIELD.spad" 575596 575604 576092 576185) (-367 "FIELD.spad" 575088 575098 575586 575591) (-366 "FGROUP.spad" 573735 573745 575068 575083) (-365 "FGLMICPK.spad" 572522 572537 573725 573730) (-364 "FFX.spad" 571897 571912 572238 572331) (-363 "FFSLPE.spad" 571400 571421 571887 571892) (-362 "FFPOLY.spad" 562662 562673 571390 571395) (-361 "FFPOLY2.spad" 561722 561739 562652 562657) (-360 "FFP.spad" 561119 561139 561438 561531) (-359 "FF.spad" 560567 560583 560800 560893) (-358 "FFNBX.spad" 559079 559099 560283 560376) (-357 "FFNBP.spad" 557592 557609 558795 558888) (-356 "FFNB.spad" 556057 556078 557273 557366) (-355 "FFINTBAS.spad" 553571 553590 556047 556052) (-354 "FFIELDC.spad" 551148 551156 553473 553566) (-353 "FFIELDC.spad" 548811 548821 551138 551143) (-352 "FFHOM.spad" 547559 547576 548801 548806) (-351 "FFF.spad" 544994 545005 547549 547554) (-350 "FFCGX.spad" 543841 543861 544710 544803) (-349 "FFCGP.spad" 542730 542750 543557 543650) (-348 "FFCG.spad" 541522 541543 542411 542504) (-347 "FFCAT.spad" 534695 534717 541361 541517) (-346 "FFCAT.spad" 527947 527971 534615 534620) (-345 "FFCAT2.spad" 527694 527734 527937 527942) (-344 "FEXPR.spad" 519411 519457 527450 527489) (-343 "FEVALAB.spad" 519119 519129 519401 519406) (-342 "FEVALAB.spad" 518612 518624 518896 518901) (-341 "FDIV.spad" 518054 518078 518602 518607) (-340 "FDIVCAT.spad" 516118 516142 518044 518049) (-339 "FDIVCAT.spad" 514180 514206 516108 516113) (-338 "FDIV2.spad" 513836 513876 514170 514175) (-337 "FCTRDATA.spad" 512844 512852 513826 513831) (-336 "FCPAK1.spad" 511411 511419 512834 512839) (-335 "FCOMP.spad" 510790 510800 511401 511406) (-334 "FC.spad" 500797 500805 510780 510785) (-333 "FAXF.spad" 493768 493782 500699 500792) (-332 "FAXF.spad" 486791 486807 493724 493729) (-331 "FARRAY.spad" 484941 484951 485974 486001) (-330 "FAMR.spad" 483077 483089 484839 484936) (-329 "FAMR.spad" 481197 481211 482961 482966) (-328 "FAMONOID.spad" 480865 480875 481151 481156) (-327 "FAMONC.spad" 479161 479173 480855 480860) (-326 "FAGROUP.spad" 478785 478795 479057 479084) (-325 "FACUTIL.spad" 476989 477006 478775 478780) (-324 "FACTFUNC.spad" 476183 476193 476979 476984) (-323 "EXPUPXS.spad" 473016 473039 474315 474464) (-322 "EXPRTUBE.spad" 470304 470312 473006 473011) (-321 "EXPRODE.spad" 467464 467480 470294 470299) (-320 "EXPR.spad" 462739 462749 463453 463860) (-319 "EXPR2UPS.spad" 458861 458874 462729 462734) (-318 "EXPR2.spad" 458566 458578 458851 458856) (-317 "EXPEXPAN.spad" 455506 455531 456138 456231) (-316 "EXIT.spad" 455177 455185 455496 455501) (-315 "EXITAST.spad" 454913 454921 455167 455172) (-314 "EVALCYC.spad" 454373 454387 454903 454908) (-313 "EVALAB.spad" 453945 453955 454363 454368) (-312 "EVALAB.spad" 453515 453527 453935 453940) (-311 "EUCDOM.spad" 451089 451097 453441 453510) (-310 "EUCDOM.spad" 448725 448735 451079 451084) (-309 "ESTOOLS.spad" 440571 440579 448715 448720) (-308 "ESTOOLS2.spad" 440174 440188 440561 440566) (-307 "ESTOOLS1.spad" 439859 439870 440164 440169) (-306 "ES.spad" 432674 432682 439849 439854) (-305 "ES.spad" 425395 425405 432572 432577) (-304 "ESCONT.spad" 422188 422196 425385 425390) (-303 "ESCONT1.spad" 421937 421949 422178 422183) (-302 "ES2.spad" 421442 421458 421927 421932) (-301 "ES1.spad" 421012 421028 421432 421437) (-300 "ERROR.spad" 418339 418347 421002 421007) (-299 "EQTBL.spad" 416811 416833 417020 417047) (-298 "EQ.spad" 411616 411626 414403 414515) (-297 "EQ2.spad" 411334 411346 411606 411611) (-296 "EP.spad" 407660 407670 411324 411329) (-295 "ENV.spad" 406338 406346 407650 407655) (-294 "ENTIRER.spad" 406006 406014 406282 406333) (-293 "EMR.spad" 405294 405335 405932 406001) (-292 "ELTAGG.spad" 403548 403567 405284 405289) (-291 "ELTAGG.spad" 401766 401787 403504 403509) (-290 "ELTAB.spad" 401241 401254 401756 401761) (-289 "ELFUTS.spad" 400628 400647 401231 401236) (-288 "ELEMFUN.spad" 400317 400325 400618 400623) (-287 "ELEMFUN.spad" 400004 400014 400307 400312) (-286 "ELAGG.spad" 397975 397985 399984 399999) (-285 "ELAGG.spad" 395883 395895 397894 397899) (-284 "ELABOR.spad" 395229 395237 395873 395878) (-283 "ELABEXPR.spad" 394161 394169 395219 395224) (-282 "EFUPXS.spad" 390937 390967 394117 394122) (-281 "EFULS.spad" 387773 387796 390893 390898) (-280 "EFSTRUC.spad" 385788 385804 387763 387768) (-279 "EF.spad" 380564 380580 385778 385783) (-278 "EAB.spad" 378840 378848 380554 380559) (-277 "E04UCFA.spad" 378376 378384 378830 378835) (-276 "E04NAFA.spad" 377953 377961 378366 378371) (-275 "E04MBFA.spad" 377533 377541 377943 377948) (-274 "E04JAFA.spad" 377069 377077 377523 377528) (-273 "E04GCFA.spad" 376605 376613 377059 377064) (-272 "E04FDFA.spad" 376141 376149 376595 376600) (-271 "E04DGFA.spad" 375677 375685 376131 376136) (-270 "E04AGNT.spad" 371527 371535 375667 375672) (-269 "DVARCAT.spad" 368216 368226 371517 371522) (-268 "DVARCAT.spad" 364903 364915 368206 368211) (-267 "DSMP.spad" 362370 362384 362675 362802) (-266 "DROPT.spad" 356329 356337 362360 362365) (-265 "DROPT1.spad" 355994 356004 356319 356324) (-264 "DROPT0.spad" 350851 350859 355984 355989) (-263 "DRAWPT.spad" 349024 349032 350841 350846) (-262 "DRAW.spad" 341900 341913 349014 349019) (-261 "DRAWHACK.spad" 341208 341218 341890 341895) (-260 "DRAWCX.spad" 338678 338686 341198 341203) (-259 "DRAWCURV.spad" 338225 338240 338668 338673) (-258 "DRAWCFUN.spad" 327757 327765 338215 338220) (-257 "DQAGG.spad" 325935 325945 327725 327752) (-256 "DPOLCAT.spad" 321284 321300 325803 325930) (-255 "DPOLCAT.spad" 316719 316737 321240 321245) (-254 "DPMO.spad" 308945 308961 309083 309384) (-253 "DPMM.spad" 301184 301202 301309 301610) (-252 "DOMTMPLT.spad" 300955 300963 301174 301179) (-251 "DOMCTOR.spad" 300710 300718 300945 300950) (-250 "DOMAIN.spad" 299797 299805 300700 300705) (-249 "DMP.spad" 297057 297072 297627 297754) (-248 "DLP.spad" 296409 296419 297047 297052) (-247 "DLIST.spad" 294988 294998 295592 295619) (-246 "DLAGG.spad" 293405 293415 294978 294983) (-245 "DIVRING.spad" 292947 292955 293349 293400) (-244 "DIVRING.spad" 292533 292543 292937 292942) (-243 "DISPLAY.spad" 290723 290731 292523 292528) (-242 "DIRPROD.spad" 280303 280319 280943 281074) (-241 "DIRPROD2.spad" 279121 279139 280293 280298) (-240 "DIRPCAT.spad" 278065 278081 278985 279116) (-239 "DIRPCAT.spad" 276738 276756 277660 277665) (-238 "DIOSP.spad" 275563 275571 276728 276733) (-237 "DIOPS.spad" 274559 274569 275543 275558) (-236 "DIOPS.spad" 273529 273541 274515 274520) (-235 "DIFRING.spad" 272825 272833 273509 273524) (-234 "DIFRING.spad" 272129 272139 272815 272820) (-233 "DIFEXT.spad" 271300 271310 272109 272124) (-232 "DIFEXT.spad" 270388 270400 271199 271204) (-231 "DIAGG.spad" 270018 270028 270368 270383) (-230 "DIAGG.spad" 269656 269668 270008 270013) (-229 "DHMATRIX.spad" 267968 267978 269113 269140) (-228 "DFSFUN.spad" 261608 261616 267958 267963) (-227 "DFLOAT.spad" 258339 258347 261498 261603) (-226 "DFINTTLS.spad" 256570 256586 258329 258334) (-225 "DERHAM.spad" 254484 254516 256550 256565) (-224 "DEQUEUE.spad" 253808 253818 254091 254118) (-223 "DEGRED.spad" 253425 253439 253798 253803) (-222 "DEFINTRF.spad" 250962 250972 253415 253420) (-221 "DEFINTEF.spad" 249472 249488 250952 250957) (-220 "DEFAST.spad" 248840 248848 249462 249467) (-219 "DECIMAL.spad" 246946 246954 247307 247400) (-218 "DDFACT.spad" 244759 244776 246936 246941) (-217 "DBLRESP.spad" 244359 244383 244749 244754) (-216 "DBASE.spad" 243023 243033 244349 244354) (-215 "DATAARY.spad" 242485 242498 243013 243018) (-214 "D03FAFA.spad" 242313 242321 242475 242480) (-213 "D03EEFA.spad" 242133 242141 242303 242308) (-212 "D03AGNT.spad" 241219 241227 242123 242128) (-211 "D02EJFA.spad" 240681 240689 241209 241214) (-210 "D02CJFA.spad" 240159 240167 240671 240676) (-209 "D02BHFA.spad" 239649 239657 240149 240154) (-208 "D02BBFA.spad" 239139 239147 239639 239644) (-207 "D02AGNT.spad" 233953 233961 239129 239134) (-206 "D01WGTS.spad" 232272 232280 233943 233948) (-205 "D01TRNS.spad" 232249 232257 232262 232267) (-204 "D01GBFA.spad" 231771 231779 232239 232244) (-203 "D01FCFA.spad" 231293 231301 231761 231766) (-202 "D01ASFA.spad" 230761 230769 231283 231288) (-201 "D01AQFA.spad" 230207 230215 230751 230756) (-200 "D01APFA.spad" 229631 229639 230197 230202) (-199 "D01ANFA.spad" 229125 229133 229621 229626) (-198 "D01AMFA.spad" 228635 228643 229115 229120) (-197 "D01ALFA.spad" 228175 228183 228625 228630) (-196 "D01AKFA.spad" 227701 227709 228165 228170) (-195 "D01AJFA.spad" 227224 227232 227691 227696) (-194 "D01AGNT.spad" 223291 223299 227214 227219) (-193 "CYCLOTOM.spad" 222797 222805 223281 223286) (-192 "CYCLES.spad" 219589 219597 222787 222792) (-191 "CVMP.spad" 219006 219016 219579 219584) (-190 "CTRIGMNP.spad" 217506 217522 218996 219001) (-189 "CTOR.spad" 217197 217205 217496 217501) (-188 "CTORKIND.spad" 216800 216808 217187 217192) (-187 "CTORCAT.spad" 216049 216057 216790 216795) (-186 "CTORCAT.spad" 215296 215306 216039 216044) (-185 "CTORCALL.spad" 214885 214895 215286 215291) (-184 "CSTTOOLS.spad" 214130 214143 214875 214880) (-183 "CRFP.spad" 207854 207867 214120 214125) (-182 "CRCEAST.spad" 207574 207582 207844 207849) (-181 "CRAPACK.spad" 206625 206635 207564 207569) (-180 "CPMATCH.spad" 206129 206144 206550 206555) (-179 "CPIMA.spad" 205834 205853 206119 206124) (-178 "COORDSYS.spad" 200843 200853 205824 205829) (-177 "CONTOUR.spad" 200254 200262 200833 200838) (-176 "CONTFRAC.spad" 196004 196014 200156 200249) (-175 "CONDUIT.spad" 195762 195770 195994 195999) (-174 "COMRING.spad" 195436 195444 195700 195757) (-173 "COMPPROP.spad" 194954 194962 195426 195431) (-172 "COMPLPAT.spad" 194721 194736 194944 194949) (-171 "COMPLEX.spad" 188858 188868 189102 189363) (-170 "COMPLEX2.spad" 188573 188585 188848 188853) (-169 "COMPILER.spad" 188122 188130 188563 188568) (-168 "COMPFACT.spad" 187724 187738 188112 188117) (-167 "COMPCAT.spad" 185796 185806 187458 187719) (-166 "COMPCAT.spad" 183596 183608 185260 185265) (-165 "COMMUPC.spad" 183344 183362 183586 183591) (-164 "COMMONOP.spad" 182877 182885 183334 183339) (-163 "COMM.spad" 182688 182696 182867 182872) (-162 "COMMAAST.spad" 182451 182459 182678 182683) (-161 "COMBOPC.spad" 181366 181374 182441 182446) (-160 "COMBINAT.spad" 180133 180143 181356 181361) (-159 "COMBF.spad" 177515 177531 180123 180128) (-158 "COLOR.spad" 176352 176360 177505 177510) (-157 "COLONAST.spad" 176018 176026 176342 176347) (-156 "CMPLXRT.spad" 175729 175746 176008 176013) (-155 "CLLCTAST.spad" 175391 175399 175719 175724) (-154 "CLIP.spad" 171499 171507 175381 175386) (-153 "CLIF.spad" 170154 170170 171455 171494) (-152 "CLAGG.spad" 166659 166669 170144 170149) (-151 "CLAGG.spad" 163035 163047 166522 166527) (-150 "CINTSLPE.spad" 162366 162379 163025 163030) (-149 "CHVAR.spad" 160504 160526 162356 162361) (-148 "CHARZ.spad" 160419 160427 160484 160499) (-147 "CHARPOL.spad" 159929 159939 160409 160414) (-146 "CHARNZ.spad" 159682 159690 159909 159924) (-145 "CHAR.spad" 157556 157564 159672 159677) (-144 "CFCAT.spad" 156884 156892 157546 157551) (-143 "CDEN.spad" 156080 156094 156874 156879) (-142 "CCLASS.spad" 154229 154237 155491 155530) (-141 "CATEGORY.spad" 153271 153279 154219 154224) (-140 "CATCTOR.spad" 153162 153170 153261 153266) (-139 "CATAST.spad" 152780 152788 153152 153157) (-138 "CASEAST.spad" 152494 152502 152770 152775) (-137 "CARTEN.spad" 147861 147885 152484 152489) (-136 "CARTEN2.spad" 147251 147278 147851 147856) (-135 "CARD.spad" 144546 144554 147225 147246) (-134 "CAPSLAST.spad" 144320 144328 144536 144541) (-133 "CACHSET.spad" 143944 143952 144310 144315) (-132 "CABMON.spad" 143499 143507 143934 143939) (-131 "BYTEORD.spad" 143174 143182 143489 143494) (-130 "BYTE.spad" 142601 142609 143164 143169) (-129 "BYTEBUF.spad" 140460 140468 141770 141797) (-128 "BTREE.spad" 139533 139543 140067 140094) (-127 "BTOURN.spad" 138538 138548 139140 139167) (-126 "BTCAT.spad" 137930 137940 138506 138533) (-125 "BTCAT.spad" 137342 137354 137920 137925) (-124 "BTAGG.spad" 136808 136816 137310 137337) (-123 "BTAGG.spad" 136294 136304 136798 136803) (-122 "BSTREE.spad" 135035 135045 135901 135928) (-121 "BRILL.spad" 133232 133243 135025 135030) (-120 "BRAGG.spad" 132172 132182 133222 133227) (-119 "BRAGG.spad" 131076 131088 132128 132133) (-118 "BPADICRT.spad" 129057 129069 129312 129405) (-117 "BPADIC.spad" 128721 128733 128983 129052) (-116 "BOUNDZRO.spad" 128377 128394 128711 128716) (-115 "BOP.spad" 123559 123567 128367 128372) (-114 "BOP1.spad" 121025 121035 123549 123554) (-113 "BOOLE.spad" 120675 120683 121015 121020) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file -- cgit v1.2.3