From ab8cc85adde879fb963c94d15675783f2cf4b183 Mon Sep 17 00:00:00 2001
From: dos-reis <gdr@axiomatics.org>
Date: Tue, 14 Aug 2007 05:14:52 +0000
Subject: Initial population.

---
 src/input/tutchap2.input.pamphlet | 113 ++++++++++++++++++++++++++++++++++++++
 1 file changed, 113 insertions(+)
 create mode 100644 src/input/tutchap2.input.pamphlet

(limited to 'src/input/tutchap2.input.pamphlet')

diff --git a/src/input/tutchap2.input.pamphlet b/src/input/tutchap2.input.pamphlet
new file mode 100644
index 00000000..ae81f5f3
--- /dev/null
+++ b/src/input/tutchap2.input.pamphlet
@@ -0,0 +1,113 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/input tutChap2.input}
+\author{The Axiom Team}
+\maketitle
+\begin{abstract}
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+\section{License}
+<<license>>=
+--Copyright The Numerical Algorithms Group Limited 1996.
+@
+<<*>>=
+<<license>>
+solve(3*x=x+2)
+x
+solve(3*x - 1 = 0)
+solve(3*x - 1)
+solve(3*x^2 - 7*x + 2)
+solve(x^2 - 2)
+solve(x^4 - 8*x^3 + 23*x^2 - 28*x + 12)
+factor(x^4 - 8*x^3 + 23*x^2 - 28*x + 12)
+radicalSolve(x^2 - 2)
+radicalSolve(x^5+x^2+1)
+solve(x^2 - 2, 0.00001)
+outputGeneral 6
+%%(11)
+solve(x^2 - 2, 1/100000)
+solve(x^2-2*x+3,0.00001)
+complexSolve(x^2-2*x+3,0.00001)
+solve((x^2 - 1.21) :: Polynomial Fraction Integer,0.00001)
+radicalSolve(a*x^2 + b*x + c, x)
+qs := %; -- the semicolon (;) inhibits AXIOM's output display
+qs1 := qs.1
+x1 := rhs %
+numeric rhs %%(9).1
+xs := map(rhs, qs)
+xs.1 + xs.2
+xs.1 * xs.2
+solve [x + 2*y + z = 5, 2*x - y - z = 6, x + y + 2*z = 0]
+solve [x^2 + y + 1, x + y^2 - 1]
+solve([x^2 + y + 1, x + y^2 - 1], 0.00001)
+complexSolve([x^2 + y + 1, x + y^2 - 1], 0.00001)
+solve([x^2-y^2, (x^2 -1)/(x+y)])
+a := (x + y)/2
+a :: Fraction Polynomial Integer
+a
+a := a :: Fraction Polynomial Integer
+a
+a := (x + y)/2;                       
+b : Fraction Polynomial Integer := a
+a : Fraction Polynomial Integer := a
+y := x^2 + 3*x + 2
+y := y :: Factored Polynomial Integer
+)clear p y -- since y has a value
+P := (y + z)*x^2 + z*x + c           
+P :: UP(x, POLY INT)
+P :: UP(x, UP(y, POLY INT))
+P := P :: UP(x, UP(y, UP(z, UP(c, INT))))
+)clear p all
+sum(1/((3*r-2)*(3*r+1)*(3*r+4)), r=1..n)
+limit(%, n=%plusInfinity)
+SA := sum(a + (r-1)*b, r = 1..n)
+SA :: UP(a, Polynomial Fraction Integer)
+SA :: UP(a, UP(b, FRAC FR POLY INT))
+SG := sum(a*b^(r-1), r=1..n)
+)set stream calculate 5                      
+series((1 + x)^n, x=0)    
+taylor((1 + x)^n, x=0) 
+%.6
+xPositive? == (x :: Float > 0)
+x := 17-sqrt(300);
+xPositive?
+x := 18-sqrt(300);
+xPositive?
+)clear p x
+x
+xPositive?
+halfSum(x, y) == (x + y)/2
+halfSum(1, 3)
+halfSum(1.5, 2.5)
+halfSum(2, 4)
+f(n)==#((2^n)::String)   
+f(20)
+f(n) == (local length; length := #((2^n)::String);     _
+                 if length > 120 then "Too long!" else length)
+f 100
+f 1000
+f(n : PositiveInteger) : Any ==                   _
+          (local length; length := #((2^n)::String);      _
+           if length > 120 then "Too long!" else length)
+f 0
+g1(x) == 2*x
+g2(x) == %
+G := 2*x
+g3(x) == G
+g1(1)
+g2(2)
+g3(3)
+l1 := [1,2,3,4,5]
+l2 := map(x +-> x^2,l1)
+BE(n) == taylor((1+x)^n, x=0)
+BE(5)
+BE(6)
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} nothing
+\end{thebibliography}
+\end{document}
-- 
cgit v1.2.3