From ab8cc85adde879fb963c94d15675783f2cf4b183 Mon Sep 17 00:00:00 2001 From: dos-reis Date: Tue, 14 Aug 2007 05:14:52 +0000 Subject: Initial population. --- src/input/quat.input.pamphlet | 73 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 73 insertions(+) create mode 100644 src/input/quat.input.pamphlet (limited to 'src/input/quat.input.pamphlet') diff --git a/src/input/quat.input.pamphlet b/src/input/quat.input.pamphlet new file mode 100644 index 00000000..93c35fee --- /dev/null +++ b/src/input/quat.input.pamphlet @@ -0,0 +1,73 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/input quat.input} +\author{The Axiom Team} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{License} +<>= +--Copyright The Numerical Algorithms Group Limited 1991. +@ +<<*>>= +<> + +-- This file demonstrates some operations with quaternions. + +)clear all + +-- The basic function for creating quaternions is "quatern". This is +-- a quaternion over the rational numbers. +q := quatern(2/11,-8,3/4,1) + +-- The four arguments are the real part, the i imaginary part, the +-- j imaginary part and the k imaginary part, respectively. These are +-- extracted with the following functions. + +real q +imagI q +imagJ q +imagK q + +-- Because q is over the rationals (and nonzero), you can invert it ... +inv q + +-- in addition to the normal arithmetic (ring) operations. +q**6 +r := quatern(-2,3,23/9,-89) +q + r +q - r + +-- In general, multiplication is not commutative. +q * r +r * q + +-- There are no predefined constants for the imaginary i, j and k but +-- you can easily define them. + +i := quatern(0,1,0,0) +j := quatern(0,0,1,0) +k := quatern(0,0,0,1) + +i*i +j*j +k*k +i*j +j*k +k*i +q * i + +-- The norm is the quaternion times its conjugate +norm q +conjugate q +q * % +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} -- cgit v1.2.3