From ab8cc85adde879fb963c94d15675783f2cf4b183 Mon Sep 17 00:00:00 2001 From: dos-reis Date: Tue, 14 Aug 2007 05:14:52 +0000 Subject: Initial population. --- src/input/lode.input.pamphlet | 66 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 66 insertions(+) create mode 100644 src/input/lode.input.pamphlet (limited to 'src/input/lode.input.pamphlet') diff --git a/src/input/lode.input.pamphlet b/src/input/lode.input.pamphlet new file mode 100644 index 00000000..364f7202 --- /dev/null +++ b/src/input/lode.input.pamphlet @@ -0,0 +1,66 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/input lode.input} +\author{The Axiom Team} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{License} +<>= +--Copyright The Numerical Algorithms Group Limited 1991. +@ +<<*>>= +<> +-------------------------------- lode.input --------------------------- + +)cl all +-- this will be the unknown +y := operator y + +-- homogeneous equation with constant coefficients +deq := differentiate(y x, x, 2) + differentiate(y x, x) + y x +solve(deq, y, x).basis + +-- initial value problem: y'' + y = 0, y(0) = y'(0) = 1 +deq := differentiate(y x, x, 2) + y x +solve(deq, y, x = 0, [1, 1]) + +-- same with a non-constant right-hand side +solve(deq = sin x, y, x) + +-- some inhomogenuous equations with rational coefficients +deq := x**3 * differentiate(y x, x, 3) + x**2 * differentiate(y x, x, 2) - _ +2 * x * differentiate(y x, x) + 2 * y x = 2 * x**4 +solve(deq, y, x) +-- same with initial conditions +solve(deq, y, x = 1, [b, 0, a]) + +-- third order equation with nontrivial singularities +deq := (x**9 + x**3) * differentiate(y x, x, 3) + _ +18 * x**8 * differentiate(y x, x,2) - 90 * x * differentiate(y x, x) - _ +30 * (11*x**6-3) * y x +solve(deq, y, x).basis + +-- third order equation on a curve of genus 0 +deq := (2*x+2)* differentiate(y x, x, 3) + 3* differentiate(y x, x, 2) + _ +(2*x**2+2*x)* differentiate(y x,x) - sqrt(x+1) * y x = 2 * x**2 + x - 1 +solve(deq, y, x).particular + +-- this equation is irreducible over the rational functions +deq := 2*x**3*differentiate(y x,x,2) + 3*x**2*differentiate(y x,x) - 2*y x +solve(deq,y,x).basis + + + + + +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} -- cgit v1.2.3