From ab8cc85adde879fb963c94d15675783f2cf4b183 Mon Sep 17 00:00:00 2001 From: dos-reis Date: Tue, 14 Aug 2007 05:14:52 +0000 Subject: Initial population. --- src/input/arith.input.pamphlet | 104 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 104 insertions(+) create mode 100644 src/input/arith.input.pamphlet (limited to 'src/input/arith.input.pamphlet') diff --git a/src/input/arith.input.pamphlet b/src/input/arith.input.pamphlet new file mode 100644 index 00000000..d3f88c30 --- /dev/null +++ b/src/input/arith.input.pamphlet @@ -0,0 +1,104 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/input arith.input} +\author{The Axiom Team} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{bugs} +\subsection{bug1} +Cannot find a definition or applicable library operation named +reduce with argument type(s) + Variable * + List Segment PositiveInteger +<>= +fac3 10 +@ +<>= +)clear all +234+108 +234*108 +234**108 +factor % +z := 1/2 +v := (z + 1) ** 10 +1024 * % +u := (x+1)**6 +differentiate(u,x) +-- factor % +)clear all +-- compute Fibonacci numbers +fib(n | n = 0) == 1 +fib(n | n = 1) == 1 +fib(n | n > 1) == fib(n-1) + fib(n-2) +fib 5 +fib 20 +)clear all +-- compute Legendre polynomials +leg(n | n = 0) == 1 +leg(n | n = 1) == x +leg(n | n > 1) == ((2*n-1)*x*leg(n-1)-(n-1)*leg(n-2))/n +leg 3 +leg 14 +-- look at it as a polynomial with rational number coefficients +--% :: POLY FRAC INT +)clear all +-- several flavors of computing factorial +fac1(n | n=1) == 1 +fac1(n | n > 1) == n*fac1(n-1) +-- +fac2 n == if n = 1 then 1 else n*fac2(n-1) +-- +fac3 n == reduce(*,[1..n]) +fac1 10 +fac2 10 +<> +@ +<<*>>= +)clear all +234+108 +234*108 +234**108 +factor % +z := 1/2 +v := (z + 1) ** 10 +1024 * % +u := (x+1)**6 +differentiate(u,x) +-- factor % +)clear all +-- compute Fibonacci numbers +fib(n | n = 0) == 1 +fib(n | n = 1) == 1 +fib(n | n > 1) == fib(n-1) + fib(n-2) +fib 5 +fib 20 +)clear all +-- compute Legendre polynomials +leg(n | n = 0) == 1 +leg(n | n = 1) == x +leg(n | n > 1) == ((2*n-1)*x*leg(n-1)-(n-1)*leg(n-2))/n +leg 3 +leg 14 +-- look at it as a polynomial with rational number coefficients +--% :: POLY FRAC INT +)clear all +-- several flavors of computing factorial +fac1(n | n=1) == 1 +fac1(n | n > 1) == n*fac1(n-1) +-- +fac2 n == if n = 1 then 1 else n*fac2(n-1) +-- +fac3 n == reduce(*,[1..n]) +fac1 10 +fac2 10 +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} -- cgit v1.2.3