From ab8cc85adde879fb963c94d15675783f2cf4b183 Mon Sep 17 00:00:00 2001 From: dos-reis Date: Tue, 14 Aug 2007 05:14:52 +0000 Subject: Initial population. --- src/algebra/oderf.spad.pamphlet | 900 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 900 insertions(+) create mode 100644 src/algebra/oderf.spad.pamphlet (limited to 'src/algebra/oderf.spad.pamphlet') diff --git a/src/algebra/oderf.spad.pamphlet b/src/algebra/oderf.spad.pamphlet new file mode 100644 index 00000000..6573a809 --- /dev/null +++ b/src/algebra/oderf.spad.pamphlet @@ -0,0 +1,900 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/algebra oderf.spad} +\author{Manuel Bronstein} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{package BALFACT BalancedFactorisation} +<>= +)abbrev package BALFACT BalancedFactorisation +++ Author: Manuel Bronstein +++ Date Created: 1 March 1991 +++ Date Last Updated: 11 October 1991 +++ Description: This package provides balanced factorisations of polynomials. +BalancedFactorisation(R, UP): Exports == Implementation where + R : Join(GcdDomain, CharacteristicZero) + UP : UnivariatePolynomialCategory R + + Exports ==> with + balancedFactorisation: (UP, UP) -> Factored UP + ++ balancedFactorisation(a, b) returns + ++ a factorisation \spad{a = p1^e1 ... pm^em} such that each + ++ \spad{pi} is balanced with respect to b. + balancedFactorisation: (UP, List UP) -> Factored UP + ++ balancedFactorisation(a, [b1,...,bn]) returns + ++ a factorisation \spad{a = p1^e1 ... pm^em} such that each + ++ pi is balanced with respect to \spad{[b1,...,bm]}. + + Implementation ==> add + balSqfr : (UP, Integer, List UP) -> Factored UP + balSqfr1: (UP, Integer, UP) -> Factored UP + + balancedFactorisation(a:UP, b:UP) == balancedFactorisation(a, [b]) + + balSqfr1(a, n, b) == + g := gcd(a, b) + fa := sqfrFactor((a exquo g)::UP, n) + ground? g => fa + fa * balSqfr1(g, n, (b exquo (g ** order(b, g)))::UP) + + balSqfr(a, n, l) == + b := first l + empty? rest l => balSqfr1(a, n, b) + */[balSqfr1(f.factor, n, b) for f in factors balSqfr(a,n,rest l)] + + balancedFactorisation(a:UP, l:List UP) == + empty?(ll := select(#1 ^= 0, l)) => + error "balancedFactorisation: 2nd argument is empty or all 0" + sa := squareFree a + unit(sa) * */[balSqfr(f.factor,f.exponent,ll) for f in factors sa]) + +@ +\section{package BOUNDZRO BoundIntegerRoots} +<>= +)abbrev package BOUNDZRO BoundIntegerRoots +++ Author: Manuel Bronstein +++ Date Created: 11 March 1991 +++ Date Last Updated: 18 November 1991 +++ Description: +++ \spadtype{BoundIntegerRoots} provides functions to +++ find lower bounds on the integer roots of a polynomial. +BoundIntegerRoots(F, UP): Exports == Implementation where + F : Join(Field, RetractableTo Fraction Integer) + UP : UnivariatePolynomialCategory F + + Z ==> Integer + Q ==> Fraction Z + K ==> Kernel F + UPQ ==> SparseUnivariatePolynomial Q + ALGOP ==> "%alg" + + Exports ==> with + integerBound: UP -> Z + ++ integerBound(p) returns a lower bound on the negative integer + ++ roots of p, and 0 if p has no negative integer roots. + + Implementation ==> add + import RationalFactorize(UPQ) + import UnivariatePolynomialCategoryFunctions2(F, UP, Q, UPQ) + + qbound : (UP, UPQ) -> Z + zroot1 : UP -> Z + qzroot1: UPQ -> Z + negint : Q -> Z + +-- returns 0 if p has no integer root < 0, its negative integer root otherwise + qzroot1 p == negint(- leadingCoefficient(reductum p) / leadingCoefficient p) + +-- returns 0 if p has no integer root < 0, its negative integer root otherwise + zroot1 p == + z := - leadingCoefficient(reductum p) / leadingCoefficient p + (r := retractIfCan(z)@Union(Q, "failed")) case Q => negint(r::Q) + 0 + +-- returns 0 if r is not a negative integer, r otherwise + negint r == + ((u := retractIfCan(r)@Union(Z, "failed")) case Z) and (u::Z < 0) => u::Z + 0 + + if F has ExpressionSpace then + bringDown: F -> Q + +-- the random substitution used by bringDown is NOT always a ring-homorphism +-- (because of potential algebraic kernels), but is ALWAYS a Z-linear map. +-- this guarantees that bringing down the coefficients of (x + n) q(x) for an +-- integer n yields a polynomial h(x) which is divisible by x + n +-- the only problem is that evaluating with random numbers can cause a +-- division by 0. We should really be able to trap this error later and +-- reevaluate with a new set of random numbers MB 11/91 + bringDown f == + t := tower f + retract eval(f, t, [random()$Q :: F for k in t]) + + integerBound p == +-- one? degree p => zroot1 p + (degree p) = 1 => zroot1 p + q1 := map(bringDown, p) + q2 := map(bringDown, p) + qbound(p, gcd(q1, q2)) + + else + integerBound p == +-- one? degree p => zroot1 p + (degree p) = 1 => zroot1 p + qbound(p, map(retract(#1)@Q, p)) + +-- we can probably do better here (i.e. without factoring) + qbound(p, q) == + bound:Z := 0 + for rec in factors factor q repeat +-- if one?(degree(rec.factor)) and ((r := qzroot1(rec.factor)) < bound) + if ((degree(rec.factor)) = 1) and ((r := qzroot1(rec.factor)) < bound) + and zero? p(r::Q::F) then bound := r + bound + +@ +\section{package ODEPRIM PrimitiveRatDE} +<>= +)abbrev package ODEPRIM PrimitiveRatDE +++ Author: Manuel Bronstein +++ Date Created: 1 March 1991 +++ Date Last Updated: 1 February 1994 +++ Description: +++ \spad{PrimitiveRatDE} provides functions for in-field solutions of linear +++ ordinary differential equations, in the transcendental case. +++ The derivation to use is given by the parameter \spad{L}. +PrimitiveRatDE(F, UP, L, LQ): Exports == Implementation where + F : Join(Field, CharacteristicZero, RetractableTo Fraction Integer) + UP : UnivariatePolynomialCategory F + L : LinearOrdinaryDifferentialOperatorCategory UP + LQ : LinearOrdinaryDifferentialOperatorCategory Fraction UP + + N ==> NonNegativeInteger + Z ==> Integer + RF ==> Fraction UP + UP2 ==> SparseUnivariatePolynomial UP + REC ==> Record(center:UP, equation:UP) + + Exports ==> with + denomLODE: (L, RF) -> Union(UP, "failed") + ++ denomLODE(op, g) returns a polynomial d such that + ++ any rational solution of \spad{op y = g} + ++ is of the form \spad{p/d} for some polynomial p, and + ++ "failed", if the equation has no rational solution. + denomLODE: (L, List RF) -> UP + ++ denomLODE(op, [g1,...,gm]) returns a polynomial + ++ d such that any rational solution of \spad{op y = c1 g1 + ... + cm gm} + ++ is of the form \spad{p/d} for some polynomial p. + indicialEquations: L -> List REC + ++ indicialEquations op returns \spad{[[d1,e1],...,[dq,eq]]} where + ++ the \spad{d_i}'s are the affine singularities of \spad{op}, + ++ and the \spad{e_i}'s are the indicial equations at each \spad{d_i}. + indicialEquations: (L, UP) -> List REC + ++ indicialEquations(op, p) returns \spad{[[d1,e1],...,[dq,eq]]} where + ++ the \spad{d_i}'s are the affine singularities of \spad{op} + ++ above the roots of \spad{p}, + ++ and the \spad{e_i}'s are the indicial equations at each \spad{d_i}. + indicialEquation: (L, F) -> UP + ++ indicialEquation(op, a) returns the indicial equation of \spad{op} + ++ at \spad{a}. + indicialEquations: LQ -> List REC + ++ indicialEquations op returns \spad{[[d1,e1],...,[dq,eq]]} where + ++ the \spad{d_i}'s are the affine singularities of \spad{op}, + ++ and the \spad{e_i}'s are the indicial equations at each \spad{d_i}. + indicialEquations: (LQ, UP) -> List REC + ++ indicialEquations(op, p) returns \spad{[[d1,e1],...,[dq,eq]]} where + ++ the \spad{d_i}'s are the affine singularities of \spad{op} + ++ above the roots of \spad{p}, + ++ and the \spad{e_i}'s are the indicial equations at each \spad{d_i}. + indicialEquation: (LQ, F) -> UP + ++ indicialEquation(op, a) returns the indicial equation of \spad{op} + ++ at \spad{a}. + splitDenominator: (LQ, List RF) -> Record(eq:L, rh:List RF) + ++ splitDenominator(op, [g1,...,gm]) returns \spad{op0, [h1,...,hm]} + ++ such that the equations \spad{op y = c1 g1 + ... + cm gm} and + ++ \spad{op0 y = c1 h1 + ... + cm hm} have the same solutions. + + Implementation ==> add + import BoundIntegerRoots(F, UP) + import BalancedFactorisation(F, UP) + import InnerCommonDenominator(UP, RF, List UP, List RF) + import UnivariatePolynomialCategoryFunctions2(F, UP, UP, UP2) + + tau : (UP, UP, UP, N) -> UP + NPbound : (UP, L, UP) -> N + hdenom : (L, UP, UP) -> UP + denom0 : (Z, L, UP, UP, UP) -> UP + indicialEq : (UP, List N, List UP) -> UP + separateZeros: (UP, UP) -> UP + UPfact : N -> UP + UP2UP2 : UP -> UP2 + indeq : (UP, L) -> UP + NPmulambda : (UP, L) -> Record(mu:Z, lambda:List N, func:List UP) + + diff := D()$L + + UP2UP2 p == map(#1::UP, p) + indicialEquations(op:L) == indicialEquations(op, leadingCoefficient op) + indicialEquation(op:L, a:F) == indeq(monomial(1, 1) - a::UP, op) + + splitDenominator(op, lg) == + cd := splitDenominator coefficients op + f := cd.den / gcd(cd.num) + l:L := 0 + while op ^= 0 repeat + l := l + monomial(retract(f * leadingCoefficient op), degree op) + op := reductum op + [l, [f * g for g in lg]] + + tau(p, pp, q, n) == + ((pp ** n) * ((q exquo (p ** order(q, p)))::UP)) rem p + + indicialEquations(op:LQ) == + indicialEquations(splitDenominator(op, empty()).eq) + + indicialEquations(op:LQ, p:UP) == + indicialEquations(splitDenominator(op, empty()).eq, p) + + indicialEquation(op:LQ, a:F) == + indeq(monomial(1, 1) - a::UP, splitDenominator(op, empty()).eq) + +-- returns z(z-1)...(z-(n-1)) + UPfact n == + zero? n => 1 + z := monomial(1, 1)$UP + */[z - i::F::UP for i in 0..(n-1)::N] + + indicialEq(c, lamb, lf) == + cp := diff c + cc := UP2UP2 c + s:UP2 := 0 + for i in lamb for f in lf repeat + s := s + (UPfact i) * UP2UP2 tau(c, cp, f, i) + primitivePart resultant(cc, s) + + NPmulambda(c, l) == + lamb:List(N) := [d := degree l] + lf:List(UP) := [a := leadingCoefficient l] + mup := d::Z - order(a, c) + while (l := reductum l) ^= 0 repeat + a := leadingCoefficient l + if (m := (d := degree l)::Z - order(a, c)) > mup then + mup := m + lamb := [d] + lf := [a] + else if (m = mup) then + lamb := concat(d, lamb) + lf := concat(a, lf) + [mup, lamb, lf] + +-- e = 0 means homogeneous equation + NPbound(c, l, e) == + rec := NPmulambda(c, l) + n := max(0, - integerBound indicialEq(c, rec.lambda, rec.func)) + zero? e => n::N + max(n, order(e, c)::Z - rec.mu)::N + + hdenom(l, d, e) == + */[dd.factor ** NPbound(dd.factor, l, e) + for dd in factors balancedFactorisation(d, coefficients l)] + + denom0(n, l, d, e, h) == + hdenom(l, d, e) * */[hh.factor ** max(0, order(e, hh.factor) - n)::N + for hh in factors balancedFactorisation(h, e)] + +-- returns a polynomials whose zeros are the zeros of e which are not +-- zeros of d + separateZeros(d, e) == + ((g := squareFreePart e) exquo gcd(g, squareFreePart d))::UP + + indeq(c, l) == + rec := NPmulambda(c, l) + indicialEq(c, rec.lambda, rec.func) + + indicialEquations(op:L, p:UP) == + [[dd.factor, indeq(dd.factor, op)] + for dd in factors balancedFactorisation(p, coefficients op)] + +-- cannot return "failed" in the homogeneous case + denomLODE(l:L, g:RF) == + d := leadingCoefficient l + zero? g => hdenom(l, d, 0) + h := separateZeros(d, e := denom g) + n := degree l + (e exquo (h**(n + 1))) case "failed" => "failed" + denom0(n, l, d, e, h) + + denomLODE(l:L, lg:List RF) == + empty? lg => denomLODE(l, 0)::UP + d := leadingCoefficient l + h := separateZeros(d, e := "lcm"/[denom g for g in lg]) + denom0(degree l, l, d, e, h) + +@ +\section{package UTSODETL UTSodetools} +<>= +)abbrev package UTSODETL UTSodetools +++ Author: Manuel Bronstein +++ Date Created: 31 January 1994 +++ Date Last Updated: 3 February 1994 +++ Description: +++ \spad{RUTSodetools} provides tools to interface with the series +++ ODE solver when presented with linear ODEs. +UTSodetools(F, UP, L, UTS): Exports == Implementation where + F : Ring + UP : UnivariatePolynomialCategory F + L : LinearOrdinaryDifferentialOperatorCategory UP + UTS: UnivariateTaylorSeriesCategory F + + Exports ==> with + UP2UTS: UP -> UTS + ++ UP2UTS(p) converts \spad{p} to a Taylor series. + UTS2UP: (UTS, NonNegativeInteger) -> UP + ++ UTS2UP(s, n) converts the first \spad{n} terms of \spad{s} + ++ to a univariate polynomial. + LODO2FUN: L -> (List UTS -> UTS) + ++ LODO2FUN(op) returns the function to pass to the series ODE + ++ solver in order to solve \spad{op y = 0}. + if F has IntegralDomain then + RF2UTS: Fraction UP -> UTS + ++ RF2UTS(f) converts \spad{f} to a Taylor series. + + Implementation ==> add + fun: (Vector UTS, List UTS) -> UTS + + UP2UTS p == + q := p(monomial(1, 1) + center(0)::UP) + +/[monomial(coefficient(q, i), i)$UTS for i in 0..degree q] + + UTS2UP(s, n) == + xmc := monomial(1, 1)$UP - center(0)::UP + xmcn:UP := 1 + ans:UP := 0 + for i in 0..n repeat + ans := ans + coefficient(s, i) * xmcn + xmcn := xmc * xmcn + ans + + LODO2FUN op == + a := recip(UP2UTS(- leadingCoefficient op))::UTS + n := (degree(op) - 1)::NonNegativeInteger + v := [a * UP2UTS coefficient(op, i) for i in 0..n]$Vector(UTS) + fun(v, #1) + + fun(v, l) == + ans:UTS := 0 + for b in l for i in 1.. repeat ans := ans + v.i * b + ans + + if F has IntegralDomain then + RF2UTS f == UP2UTS(numer f) * recip(UP2UTS denom f)::UTS + +@ +\section{package ODERAT RationalLODE} +<>= +)abbrev package ODERAT RationalLODE +++ Author: Manuel Bronstein +++ Date Created: 13 March 1991 +++ Date Last Updated: 13 April 1994 +++ Description: +++ \spad{RationalLODE} provides functions for in-field solutions of linear +++ ordinary differential equations, in the rational case. +RationalLODE(F, UP): Exports == Implementation where + F : Join(Field, CharacteristicZero, RetractableTo Integer, + RetractableTo Fraction Integer) + UP : UnivariatePolynomialCategory F + + N ==> NonNegativeInteger + Z ==> Integer + RF ==> Fraction UP + U ==> Union(RF, "failed") + V ==> Vector F + M ==> Matrix F + LODO ==> LinearOrdinaryDifferentialOperator1 RF + LODO2==> LinearOrdinaryDifferentialOperator2(UP, RF) + + Exports ==> with + ratDsolve: (LODO, RF) -> Record(particular: U, basis: List RF) + ++ ratDsolve(op, g) returns \spad{["failed", []]} if the equation + ++ \spad{op y = g} has no rational solution. Otherwise, it returns + ++ \spad{[f, [y1,...,ym]]} where f is a particular rational solution + ++ and the yi's form a basis for the rational solutions of the + ++ homogeneous equation. + ratDsolve: (LODO, List RF) -> Record(basis:List RF, mat:Matrix F) + ++ ratDsolve(op, [g1,...,gm]) returns \spad{[[h1,...,hq], M]} such + ++ that any rational solution of \spad{op y = c1 g1 + ... + cm gm} + ++ is of the form \spad{d1 h1 + ... + dq hq} where + ++ \spad{M [d1,...,dq,c1,...,cm] = 0}. + ratDsolve: (LODO2, RF) -> Record(particular: U, basis: List RF) + ++ ratDsolve(op, g) returns \spad{["failed", []]} if the equation + ++ \spad{op y = g} has no rational solution. Otherwise, it returns + ++ \spad{[f, [y1,...,ym]]} where f is a particular rational solution + ++ and the yi's form a basis for the rational solutions of the + ++ homogeneous equation. + ratDsolve: (LODO2, List RF) -> Record(basis:List RF, mat:Matrix F) + ++ ratDsolve(op, [g1,...,gm]) returns \spad{[[h1,...,hq], M]} such + ++ that any rational solution of \spad{op y = c1 g1 + ... + cm gm} + ++ is of the form \spad{d1 h1 + ... + dq hq} where + ++ \spad{M [d1,...,dq,c1,...,cm] = 0}. + indicialEquationAtInfinity: LODO -> UP + ++ indicialEquationAtInfinity op returns the indicial equation of + ++ \spad{op} at infinity. + indicialEquationAtInfinity: LODO2 -> UP + ++ indicialEquationAtInfinity op returns the indicial equation of + ++ \spad{op} at infinity. + + Implementation ==> add + import BoundIntegerRoots(F, UP) + import RationalIntegration(F, UP) + import PrimitiveRatDE(F, UP, LODO2, LODO) + import LinearSystemMatrixPackage(F, V, V, M) + import InnerCommonDenominator(UP, RF, List UP, List RF) + + nzero? : V -> Boolean + evenodd : N -> F + UPfact : N -> UP + infOrder : RF -> Z + infTau : (UP, N) -> F + infBound : (LODO2, List RF) -> N + regularPoint : (LODO2, List RF) -> Z + infIndicialEquation: (List N, List UP) -> UP + makeDot : (Vector F, List RF) -> RF + unitlist : (N, N) -> List F + infMuLambda: LODO2 -> Record(mu:Z, lambda:List N, func:List UP) + ratDsolve0: (LODO2, RF) -> Record(particular: U, basis: List RF) + ratDsolve1: (LODO2, List RF) -> Record(basis:List RF, mat:Matrix F) + candidates: (LODO2,List RF,UP) -> Record(basis:List RF,particular:List RF) + + dummy := new()$Symbol + + infOrder f == (degree denom f) - (degree numer f) + evenodd n == (even? n => 1; -1) + + ratDsolve1(op, lg) == + d := denomLODE(op, lg) + rec := candidates(op, lg, d) + l := concat([op q for q in rec.basis], + [op(rec.particular.i) - lg.i for i in 1..#(rec.particular)]) + sys1 := reducedSystem(matrix [l])@Matrix(UP) + [rec.basis, reducedSystem sys1] + + ratDsolve0(op, g) == + zero? degree op => [inv(leadingCoefficient(op)::RF) * g, empty()] + minimumDegree op > 0 => + sol := ratDsolve0(monicRightDivide(op, monomial(1, 1)).quotient, g) + b:List(RF) := [1] + for f in sol.basis repeat + if (uu := infieldint f) case RF then b := concat(uu::RF, b) + sol.particular case "failed" => ["failed", b] + [infieldint(sol.particular::RF), b] + (u := denomLODE(op, g)) case "failed" => ["failed", empty()] + rec := candidates(op, [g], u::UP) + l := lb := lsol := empty()$List(RF) + for q in rec.basis repeat + if zero?(opq := op q) then lsol := concat(q, lsol) + else (l := concat(opq, l); lb := concat(q, lb)) + h:RF := (zero? g => 0; first(rec.particular)) + empty? l => + zero? g => [0, lsol] + [(g = op h => h; "failed"), lsol] + m:M + v:V + if zero? g then + m := reducedSystem(reducedSystem(matrix [l])@Matrix(UP))@M + v := new(ncols m, 0)$V + else + sys1 := reducedSystem(matrix [l], vector [g - op h] + )@Record(mat: Matrix UP, vec: Vector UP) + sys2 := reducedSystem(sys1.mat, sys1.vec)@Record(mat:M, vec:V) + m := sys2.mat + v := sys2.vec + sol := solve(m, v) + part:U := + zero? g => 0 + sol.particular case "failed" => "failed" + makeDot(sol.particular::V, lb) + first(rec.particular) + [part, + concat_!(lsol, [makeDot(v, lb) for v in sol.basis | nzero? v])] + + indicialEquationAtInfinity(op:LODO2) == + rec := infMuLambda op + infIndicialEquation(rec.lambda, rec.func) + + indicialEquationAtInfinity(op:LODO) == + rec := splitDenominator(op, empty()) + indicialEquationAtInfinity(rec.eq) + + regularPoint(l, lg) == + a := leadingCoefficient(l) * commonDenominator lg + coefficient(a, 0) ^= 0 => 0 + for i in 1.. repeat + a(j := i::F) ^= 0 => return i + a(-j) ^= 0 => return(-i) + + unitlist(i, q) == + v := new(q, 0)$Vector(F) + v.i := 1 + parts v + + candidates(op, lg, d) == + n := degree d + infBound(op, lg) + m := regularPoint(op, lg) + uts := UnivariateTaylorSeries(F, dummy, m::F) + tools := UTSodetools(F, UP, LODO2, uts) + solver := UnivariateTaylorSeriesODESolver(F, uts) + dd := UP2UTS(d)$tools + f := LODO2FUN(op)$tools + q := degree op + e := unitlist(1, q) + hom := [UTS2UP(dd * ode(f, unitlist(i, q))$solver, n)$tools /$RF d + for i in 1..q]$List(RF) + a1 := inv(leadingCoefficient(op)::RF) + part := [UTS2UP(dd * ode(RF2UTS(a1 * g)$tools + f #1, e)$solver, n)$tools + /$RF d for g in lg | g ^= 0]$List(RF) + [hom, part] + + nzero? v == + for i in minIndex v .. maxIndex v repeat + not zero? qelt(v, i) => return true + false + +-- returns z(z+1)...(z+(n-1)) + UPfact n == + zero? n => 1 + z := monomial(1, 1)$UP + */[z + i::F::UP for i in 0..(n-1)::N] + + infMuLambda l == + lamb:List(N) := [d := degree l] + lf:List(UP) := [a := leadingCoefficient l] + mup := degree(a)::Z - d + while (l := reductum l) ^= 0 repeat + a := leadingCoefficient l + if (m := degree(a)::Z - (d := degree l)) > mup then + mup := m + lamb := [d] + lf := [a] + else if (m = mup) then + lamb := concat(d, lamb) + lf := concat(a, lf) + [mup, lamb, lf] + + infIndicialEquation(lambda, lf) == + ans:UP := 0 + for i in lambda for f in lf repeat + ans := ans + evenodd i * leadingCoefficient f * UPfact i + ans + + infBound(l, lg) == + rec := infMuLambda l + n := min(- degree(l)::Z - 1, + integerBound infIndicialEquation(rec.lambda, rec.func)) + while not(empty? lg) and zero? first lg repeat lg := rest lg + empty? lg => (-n)::N + m := infOrder first lg + for g in rest lg repeat + if not(zero? g) and (mm := infOrder g) < m then m := mm + (-min(n, rec.mu - degree(leadingCoefficient l)::Z + m))::N + + makeDot(v, bas) == + ans:RF := 0 + for i in 1.. for b in bas repeat ans := ans + v.i::UP * b + ans + + ratDsolve(op:LODO, g:RF) == + rec := splitDenominator(op, [g]) + ratDsolve0(rec.eq, first(rec.rh)) + + ratDsolve(op:LODO, lg:List RF) == + rec := splitDenominator(op, lg) + ratDsolve1(rec.eq, rec.rh) + + ratDsolve(op:LODO2, g:RF) == + unit?(c := content op) => ratDsolve0(op, g) + ratDsolve0((op exquo c)::LODO2, inv(c::RF) * g) + + ratDsolve(op:LODO2, lg:List RF) == + unit?(c := content op) => ratDsolve1(op, lg) + ratDsolve1((op exquo c)::LODO2, [inv(c::RF) * g for g in lg]) + +@ +\section{package ODETOOLS ODETools} +<>= +)abbrev package ODETOOLS ODETools +++ Author: Manuel Bronstein +++ Date Created: 20 March 1991 +++ Date Last Updated: 2 February 1994 +++ Description: +++ \spad{ODETools} provides tools for the linear ODE solver. +ODETools(F, LODO): Exports == Implementation where + N ==> NonNegativeInteger + L ==> List F + V ==> Vector F + M ==> Matrix F + + F: Field + LODO: LinearOrdinaryDifferentialOperatorCategory F + + Exports ==> with + wronskianMatrix: L -> M + ++ wronskianMatrix([f1,...,fn]) returns the \spad{n x n} matrix m + ++ whose i^th row is \spad{[f1^(i-1),...,fn^(i-1)]}. + wronskianMatrix: (L, N) -> M + ++ wronskianMatrix([f1,...,fn], q, D) returns the \spad{q x n} matrix m + ++ whose i^th row is \spad{[f1^(i-1),...,fn^(i-1)]}. + variationOfParameters: (LODO, F, L) -> Union(V, "failed") + ++ variationOfParameters(op, g, [f1,...,fm]) + ++ returns \spad{[u1,...,um]} such that a particular solution of the + ++ equation \spad{op y = g} is \spad{f1 int(u1) + ... + fm int(um)} + ++ where \spad{[f1,...,fm]} are linearly independent and \spad{op(fi)=0}. + ++ The value "failed" is returned if \spad{m < n} and no particular + ++ solution is found. + particularSolution: (LODO, F, L, F -> F) -> Union(F, "failed") + ++ particularSolution(op, g, [f1,...,fm], I) returns a particular + ++ solution h of the equation \spad{op y = g} where \spad{[f1,...,fm]} + ++ are linearly independent and \spad{op(fi)=0}. + ++ The value "failed" is returned if no particular solution is found. + ++ Note: the method of variations of parameters is used. + + Implementation ==> add + import LinearSystemMatrixPackage(F, V, V, M) + + diff := D()$LODO + + wronskianMatrix l == wronskianMatrix(l, #l) + + wronskianMatrix(l, q) == + v:V := vector l + m:M := zero(q, #v) + for i in minRowIndex m .. maxRowIndex m repeat + setRow_!(m, i, v) + v := map_!(diff #1, v) + m + + variationOfParameters(op, g, b) == + empty? b => "failed" + v:V := new(n := degree op, 0) + qsetelt_!(v, maxIndex v, g / leadingCoefficient op) + particularSolution(wronskianMatrix(b, n), v) + + particularSolution(op, g, b, integration) == + zero? g => 0 + (sol := variationOfParameters(op, g, b)) case "failed" => "failed" + ans:F := 0 + for f in b for i in minIndex(s := sol::V) .. repeat + ans := ans + integration(qelt(s, i)) * f + ans + +@ +\section{package ODEINT ODEIntegration} +<>= +)abbrev package ODEINT ODEIntegration +++ Author: Manuel Bronstein +++ Date Created: 4 November 1991 +++ Date Last Updated: 2 February 1994 +++ Description: +++ \spadtype{ODEIntegration} provides an interface to the integrator. +++ This package is intended for use +++ by the differential equations solver but not at top-level. +ODEIntegration(R, F): Exports == Implementation where + R: Join(OrderedSet, EuclideanDomain, RetractableTo Integer, + LinearlyExplicitRingOver Integer, CharacteristicZero) + F: Join(AlgebraicallyClosedFunctionSpace R, TranscendentalFunctionCategory, + PrimitiveFunctionCategory) + + Q ==> Fraction Integer + UQ ==> Union(Q, "failed") + SY ==> Symbol + K ==> Kernel F + P ==> SparseMultivariatePolynomial(R, K) + REC ==> Record(coef:Q, logand:F) + + Exports ==> with + int : (F, SY) -> F + ++ int(f, x) returns the integral of f with respect to x. + expint: (F, SY) -> F + ++ expint(f, x) returns e^{the integral of f with respect to x}. + diff : SY -> (F -> F) + ++ diff(x) returns the derivation with respect to x. + + Implementation ==> add + import FunctionSpaceIntegration(R, F) + import ElementaryFunctionStructurePackage(R, F) + + isQ : List F -> UQ + isQlog: F -> Union(REC, "failed") + mkprod: List REC -> F + + diff x == differentiate(#1, x) + +-- This is the integration function to be used for quadratures + int(f, x) == + (u := integrate(f, x)) case F => u::F + first(u::List(F)) + +-- mkprod([q1, f1],...,[qn,fn]) returns */(fi^qi) but groups the +-- qi having the same denominator together + mkprod l == + empty? l => 1 + rec := first l + d := denom(rec.coef) + ll := select(denom(#1.coef) = d, l) + nthRoot(*/[r.logand ** numer(r.coef) for r in ll], d) * + mkprod setDifference(l, ll) + +-- computes exp(int(f,x)) in a non-naive way + expint(f, x) == + a := int(f, x) + (u := validExponential(tower a, a, x)) case F => u::F + da := denom a + l := + (v := isPlus(na := numer a)) case List(P) => v::List(P) + [na] + exponent:P := 0 + lrec:List(REC) := empty() + for term in l repeat + if (w := isQlog(term / da)) case REC then + lrec := concat(w::REC, lrec) + else + exponent := exponent + term + mkprod(lrec) * exp(exponent / da) + +-- checks if all the elements of l are rational numbers, returns their product + isQ l == + prod:Q := 1 + for x in l repeat + (u := retractIfCan(x)@UQ) case "failed" => return "failed" + prod := prod * u::Q + prod + +-- checks if a non-sum expr is of the form c * log(g) for a rational number c + isQlog f == + is?(f, "log"::SY) => [1, first argument(retract(f)@K)] + (v := isTimes f) case List(F) and (#(l := v::List(F)) <= 3) => + l := reverse_! sort_! l + is?(first l, "log"::SY) and ((u := isQ rest l) case Q) => + [u::Q, first argument(retract(first(l))@K)] + "failed" + "failed" + +@ +\section{package ODECONST ConstantLODE} +<>= +)abbrev package ODECONST ConstantLODE +++ Author: Manuel Bronstein +++ Date Created: 18 March 1991 +++ Date Last Updated: 3 February 1994 +++ Description: Solution of linear ordinary differential equations, constant coefficient case. +ConstantLODE(R, F, L): Exports == Implementation where + R: Join(OrderedSet, EuclideanDomain, RetractableTo Integer, + LinearlyExplicitRingOver Integer, CharacteristicZero) + F: Join(AlgebraicallyClosedFunctionSpace R, + TranscendentalFunctionCategory, PrimitiveFunctionCategory) + L: LinearOrdinaryDifferentialOperatorCategory F + + Z ==> Integer + SY ==> Symbol + K ==> Kernel F + V ==> Vector F + M ==> Matrix F + SUP ==> SparseUnivariatePolynomial F + + Exports ==> with + constDsolve: (L, F, SY) -> Record(particular:F, basis:List F) + ++ constDsolve(op, g, x) returns \spad{[f, [y1,...,ym]]} + ++ where f is a particular solution of the equation \spad{op y = g}, + ++ and the \spad{yi}'s form a basis for the solutions of \spad{op y = 0}. + + Implementation ==> add + import ODETools(F, L) + import ODEIntegration(R, F) + import ElementaryFunctionSign(R, F) + import AlgebraicManipulations(R, F) + import FunctionSpaceIntegration(R, F) + import FunctionSpaceUnivariatePolynomialFactor(R, F, SUP) + + homoBasis: (L, F) -> List F + quadSol : (SUP, F) -> List F + basisSqfr: (SUP, F) -> List F + basisSol : (SUP, Z, F) -> List F + + constDsolve(op, g, x) == + b := homoBasis(op, x::F) + [particularSolution(op, g, b, int(#1, x))::F, b] + + homoBasis(op, x) == + p:SUP := 0 + while op ^= 0 repeat + p := p + monomial(leadingCoefficient op, degree op) + op := reductum op + b:List(F) := empty() + for ff in factors ffactor p repeat + b := concat_!(b, basisSol(ff.factor, dec(ff.exponent), x)) + b + + basisSol(p, n, x) == + l := basisSqfr(p, x) + zero? n => l + ll := copy l + xn := x::F + for i in 1..n repeat + l := concat_!(l, [xn * f for f in ll]) + xn := x * xn + l + + basisSqfr(p, x) == +-- one?(d := degree p) => + ((d := degree p) = 1) => + [exp(- coefficient(p, 0) * x / leadingCoefficient p)] + d = 2 => quadSol(p, x) + [exp(a * x) for a in rootsOf p] + + quadSol(p, x) == + (u := sign(delta := (b := coefficient(p, 1))**2 - 4 * + (a := leadingCoefficient p) * (c := coefficient(p, 0)))) + case Z and negative?(u::Z) => + y := x / (2 * a) + r := - b * y + i := rootSimp(sqrt(-delta)) * y + [exp(r) * cos(i), exp(r) * sin(i)] + [exp(a * x) for a in zerosOf p] + +@ +\section{License} +<>= +--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +@ +<<*>>= +<> + +-- Compile order for the differential equation solver: +-- oderf.spad odealg.spad nlode.spad nlinsol.spad riccati.spad odeef.spad + +<> +<> +<> +<> +<> +<> +<> +<> +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} -- cgit v1.2.3