From ab8cc85adde879fb963c94d15675783f2cf4b183 Mon Sep 17 00:00:00 2001 From: dos-reis Date: Tue, 14 Aug 2007 05:14:52 +0000 Subject: Initial population. --- src/algebra/naalg.spad.pamphlet | 1095 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 1095 insertions(+) create mode 100644 src/algebra/naalg.spad.pamphlet (limited to 'src/algebra/naalg.spad.pamphlet') diff --git a/src/algebra/naalg.spad.pamphlet b/src/algebra/naalg.spad.pamphlet new file mode 100644 index 00000000..ec93ce54 --- /dev/null +++ b/src/algebra/naalg.spad.pamphlet @@ -0,0 +1,1095 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/algebra naalg.spad} +\author{Johannes Grabmeier, Robert Wisbauer} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{domain ALGSC AlgebraGivenByStructuralConstants} +<>= +)abbrev domain ALGSC AlgebraGivenByStructuralConstants +++ Authors: J. Grabmeier, R. Wisbauer +++ Date Created: 01 March 1991 +++ Date Last Updated: 22 January 1992 +++ Basic Operations: +++ Related Constructors: +++ Also See: +++ AMS Classifications: +++ Keywords: algebra, structural constants +++ Reference: +++ R.D. Schafer: An Introduction to Nonassociative Algebras +++ Academic Press, New York, 1966 +++ Description: +++ AlgebraGivenByStructuralConstants implements finite rank algebras +++ over a commutative ring, given by the structural constants \spad{gamma} +++ with respect to a fixed basis \spad{[a1,..,an]}, where +++ \spad{gamma} is an \spad{n}-vector of n by n matrices +++ \spad{[(gammaijk) for k in 1..rank()]} defined by +++ \spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. +++ The symbols for the fixed basis +++ have to be given as a list of symbols. +AlgebraGivenByStructuralConstants(R:Field, n : PositiveInteger,_ + ls : List Symbol, gamma: Vector Matrix R ): public == private where + + V ==> Vector + M ==> Matrix + I ==> Integer + NNI ==> NonNegativeInteger + REC ==> Record(particular: Union(V R,"failed"),basis: List V R) + LSMP ==> LinearSystemMatrixPackage(R,V R,V R, M R) + + --public ==> FramedNonAssociativeAlgebra(R) with + public ==> Join(FramedNonAssociativeAlgebra(R), _ + LeftModule(SquareMatrix(n,R)) ) with + + coerce : Vector R -> % + ++ coerce(v) converts a vector to a member of the algebra + ++ by forming a linear combination with the basis element. + ++ Note: the vector is assumed to have length equal to the + ++ dimension of the algebra. + + private ==> DirectProduct(n,R) add + + Rep := DirectProduct(n,R) + + x,y : % + dp : DirectProduct(n,R) + v : V R + + + recip(x) == recip(x)$FiniteRankNonAssociativeAlgebra_&(%,R) + + (m:SquareMatrix(n,R))*(x:%) == apply((m :: Matrix R),x) + coerce v == directProduct(v) :: % + + structuralConstants() == gamma + + coordinates(x) == vector(entries(x :: Rep)$Rep)$Vector(R) + + coordinates(x,b) == + --not (maxIndex b = n) => + -- error("coordinates: your 'basis' has not the right length") + m : NonNegativeInteger := (maxIndex b) :: NonNegativeInteger + transitionMatrix : Matrix R := new(n,m,0$R)$Matrix(R) + for i in 1..m repeat + setColumn_!(transitionMatrix,i,coordinates(b.i)) + res : REC := solve(transitionMatrix,coordinates(x))$LSMP + if (not every?(zero?$R,first res.basis)) then + error("coordinates: warning your 'basis' is linearly dependent") + (res.particular case "failed") => + error("coordinates: first argument is not in linear span of second argument") + (res.particular) :: (Vector R) + + basis() == [unitVector(i::PositiveInteger)::% for i in 1..n] + + someBasis() == basis()$% + + rank() == n + + elt(x,i) == elt(x:Rep,i)$Rep + + coerce(x:%):OutputForm == + zero?(x::Rep)$Rep => (0$R) :: OutputForm + le : List OutputForm := nil + for i in 1..n repeat + coef : R := elt(x::Rep,i) + not zero?(coef)$R => +-- one?(coef)$R => + ((coef) = 1)$R => + -- sy : OutputForm := elt(ls,i)$(List Symbol) :: OutputForm + le := cons(elt(ls,i)$(List Symbol) :: OutputForm, le) + le := cons(coef :: OutputForm * elt(ls,i)$(List Symbol)_ + :: OutputForm, le) + reduce("+",le) + + x * y == + v : Vector R := new(n,0) + for k in 1..n repeat + h : R := 0 + for i in 1..n repeat + for j in 1..n repeat + h := h +$R elt(x,i) *$R elt(y,j) *$R elt(gamma.k,i,j ) + v.k := h + directProduct v + + + + alternative?() == + for i in 1..n repeat + -- expression for check of left alternative is symmetric in i and j: + -- expression for check of right alternative is symmetric in j and k: + for j in 1..i-1 repeat + for k in j..n repeat + -- right check + for r in 1..n repeat + res := 0$R + for l in 1..n repeat + res := res - _ + (elt(gamma.l,j,k)+elt(gamma.l,k,j))*elt(gamma.r,i,l)+_ + (elt(gamma.l,i,j)*elt(gamma.r,l,k) + elt(gamma.l,i,k)*_ + elt(gamma.r,l,j) ) + not zero? res => + messagePrint("algebra is not right alternative")$OutputForm + return false + for j in i..n repeat + for k in 1..j-1 repeat + -- left check + for r in 1..n repeat + res := 0$R + for l in 1..n repeat + res := res + _ + (elt(gamma.l,i,j)+elt(gamma.l,j,i))*elt(gamma.r,l,k)-_ + (elt(gamma.l,j,k)*elt(gamma.r,i,l) + elt(gamma.l,i,k)*_ + elt(gamma.r,j,l) ) + not (zero? res) => + messagePrint("algebra is not left alternative")$OutputForm + return false + + for k in j..n repeat + -- left check + for r in 1..n repeat + res := 0$R + for l in 1..n repeat + res := res + _ + (elt(gamma.l,i,j)+elt(gamma.l,j,i))*elt(gamma.r,l,k)-_ + (elt(gamma.l,j,k)*elt(gamma.r,i,l) + elt(gamma.l,i,k)*_ + elt(gamma.r,j,l) ) + not (zero? res) => + messagePrint("algebra is not left alternative")$OutputForm + return false + -- right check + for r in 1..n repeat + res := 0$R + for l in 1..n repeat + res := res - _ + (elt(gamma.l,j,k)+elt(gamma.l,k,j))*elt(gamma.r,i,l)+_ + (elt(gamma.l,i,j)*elt(gamma.r,l,k) + elt(gamma.l,i,k)*_ + elt(gamma.r,l,j) ) + not (zero? res) => + messagePrint("algebra is not right alternative")$OutputForm + return false + + messagePrint("algebra satisfies 2*associator(a,b,b) = 0 = 2*associator(a,a,b) = 0")$OutputForm + true + + -- should be in the category, but is not exported +-- conditionsForIdempotents b == +-- n := rank() +-- --gamma : Vector Matrix R := structuralConstants b +-- listOfNumbers : List String := [STRINGIMAGE(q)$Lisp for q in 1..n] +-- symbolsForCoef : Vector Symbol := +-- [concat("%", concat("x", i))::Symbol for i in listOfNumbers] +-- conditions : List Polynomial R := [] + -- for k in 1..n repeat + -- xk := symbolsForCoef.k + -- p : Polynomial R := monomial( - 1$Polynomial(R), [xk], [1] ) + -- for i in 1..n repeat + -- for j in 1..n repeat + -- xi := symbolsForCoef.i + -- xj := symbolsForCoef.j + -- p := p + monomial(_ + -- elt((gamma.k),i,j) :: Polynomial(R), [xi,xj], [1,1]) + -- conditions := cons(p,conditions) + -- conditions + + associative?() == + for i in 1..n repeat + for j in 1..n repeat + for k in 1..n repeat + for r in 1..n repeat + res := 0$R + for l in 1..n repeat + res := res + elt(gamma.l,i,j)*elt(gamma.r,l,k)-_ + elt(gamma.l,j,k)*elt(gamma.r,i,l) + not (zero? res) => + messagePrint("algebra is not associative")$OutputForm + return false + messagePrint("algebra is associative")$OutputForm + true + + + antiAssociative?() == + for i in 1..n repeat + for j in 1..n repeat + for k in 1..n repeat + for r in 1..n repeat + res := 0$R + for l in 1..n repeat + res := res + elt(gamma.l,i,j)*elt(gamma.r,l,k)+_ + elt(gamma.l,j,k)*elt(gamma.r,i,l) + not (zero? res) => + messagePrint("algebra is not anti-associative")$OutputForm + return false + messagePrint("algebra is anti-associative")$OutputForm + true + + commutative?() == + for i in 1..n repeat + for j in (i+1)..n repeat + for k in 1..n repeat + not ( elt(gamma.k,i,j)=elt(gamma.k,j,i) ) => + messagePrint("algebra is not commutative")$OutputForm + return false + messagePrint("algebra is commutative")$OutputForm + true + + antiCommutative?() == + for i in 1..n repeat + for j in i..n repeat + for k in 1..n repeat + not zero? (i=j => elt(gamma.k,i,i); elt(gamma.k,i,j)+elt(gamma.k,j,i) ) => + messagePrint("algebra is not anti-commutative")$OutputForm + return false + messagePrint("algebra is anti-commutative")$OutputForm + true + + leftAlternative?() == + for i in 1..n repeat + -- expression is symmetric in i and j: + for j in i..n repeat + for k in 1..n repeat + for r in 1..n repeat + res := 0$R + for l in 1..n repeat + res := res + (elt(gamma.l,i,j)+elt(gamma.l,j,i))*elt(gamma.r,l,k)-_ + (elt(gamma.l,j,k)*elt(gamma.r,i,l) + elt(gamma.l,i,k)*elt(gamma.r,j,l) ) + not (zero? res) => + messagePrint("algebra is not left alternative")$OutputForm + return false + messagePrint("algebra is left alternative")$OutputForm + true + + + rightAlternative?() == + for i in 1..n repeat + for j in 1..n repeat + -- expression is symmetric in j and k: + for k in j..n repeat + for r in 1..n repeat + res := 0$R + for l in 1..n repeat + res := res - (elt(gamma.l,j,k)+elt(gamma.l,k,j))*elt(gamma.r,i,l)+_ + (elt(gamma.l,i,j)*elt(gamma.r,l,k) + elt(gamma.l,i,k)*elt(gamma.r,l,j) ) + not (zero? res) => + messagePrint("algebra is not right alternative")$OutputForm + return false + messagePrint("algebra is right alternative")$OutputForm + true + + + flexible?() == + for i in 1..n repeat + for j in 1..n repeat + -- expression is symmetric in i and k: + for k in i..n repeat + for r in 1..n repeat + res := 0$R + for l in 1..n repeat + res := res + elt(gamma.l,i,j)*elt(gamma.r,l,k)-_ + elt(gamma.l,j,k)*elt(gamma.r,i,l)+_ + elt(gamma.l,k,j)*elt(gamma.r,l,i)-_ + elt(gamma.l,j,i)*elt(gamma.r,k,l) + not (zero? res) => + messagePrint("algebra is not flexible")$OutputForm + return false + messagePrint("algebra is flexible")$OutputForm + true + + lieAdmissible?() == + for i in 1..n repeat + for j in 1..n repeat + for k in 1..n repeat + for r in 1..n repeat + res := 0$R + for l in 1..n repeat + res := res_ + + (elt(gamma.l,i,j)-elt(gamma.l,j,i))*(elt(gamma.r,l,k)-elt(gamma.r,k,l)) _ + + (elt(gamma.l,j,k)-elt(gamma.l,k,j))*(elt(gamma.r,l,i)-elt(gamma.r,i,l)) _ + + (elt(gamma.l,k,i)-elt(gamma.l,i,k))*(elt(gamma.r,l,j)-elt(gamma.r,j,l)) + not (zero? res) => + messagePrint("algebra is not Lie admissible")$OutputForm + return false + messagePrint("algebra is Lie admissible")$OutputForm + true + + jordanAdmissible?() == + recip(2 * 1$R) case "failed" => + messagePrint("this algebra is not Jordan admissible, as 2 is not invertible in the ground ring")$OutputForm + false + for i in 1..n repeat + for j in 1..n repeat + for k in 1..n repeat + for w in 1..n repeat + for t in 1..n repeat + res := 0$R + for l in 1..n repeat + for r in 1..n repeat + res := res_ + + (elt(gamma.l,i,j)+elt(gamma.l,j,i))_ + * (elt(gamma.r,w,k)+elt(gamma.r,k,w))_ + * (elt(gamma.t,l,r)+elt(gamma.t,r,l))_ + - (elt(gamma.r,w,k)+elt(gamma.r,k,w))_ + * (elt(gamma.l,j,r)+elt(gamma.l,r,j))_ + * (elt(gamma.t,i,l)+elt(gamma.t,l,i))_ + + (elt(gamma.l,w,j)+elt(gamma.l,j,w))_ + * (elt(gamma.r,k,i)+elt(gamma.r,i,k))_ + * (elt(gamma.t,l,r)+elt(gamma.t,r,l))_ + - (elt(gamma.r,k,i)+elt(gamma.r,k,i))_ + * (elt(gamma.l,j,r)+elt(gamma.l,r,j))_ + * (elt(gamma.t,w,l)+elt(gamma.t,l,w))_ + + (elt(gamma.l,k,j)+elt(gamma.l,j,k))_ + * (elt(gamma.r,i,w)+elt(gamma.r,w,i))_ + * (elt(gamma.t,l,r)+elt(gamma.t,r,l))_ + - (elt(gamma.r,i,w)+elt(gamma.r,w,i))_ + * (elt(gamma.l,j,r)+elt(gamma.l,r,j))_ + * (elt(gamma.t,k,l)+elt(gamma.t,l,k)) + not (zero? res) => + messagePrint("algebra is not Jordan admissible")$OutputForm + return false + messagePrint("algebra is Jordan admissible")$OutputForm + true + + jordanAlgebra?() == + recip(2 * 1$R) case "failed" => + messagePrint("this is not a Jordan algebra, as 2 is not invertible in the ground ring")$OutputForm + false + not commutative?() => + messagePrint("this is not a Jordan algebra")$OutputForm + false + for i in 1..n repeat + for j in 1..n repeat + for k in 1..n repeat + for l in 1..n repeat + for t in 1..n repeat + res := 0$R + for r in 1..n repeat + for s in 1..n repeat + res := res + _ + elt(gamma.r,i,j)*elt(gamma.s,l,k)*elt(gamma.t,r,s) - _ + elt(gamma.r,l,k)*elt(gamma.s,j,r)*elt(gamma.t,i,s) + _ + elt(gamma.r,l,j)*elt(gamma.s,k,k)*elt(gamma.t,r,s) - _ + elt(gamma.r,k,i)*elt(gamma.s,j,r)*elt(gamma.t,l,s) + _ + elt(gamma.r,k,j)*elt(gamma.s,i,k)*elt(gamma.t,r,s) - _ + elt(gamma.r,i,l)*elt(gamma.s,j,r)*elt(gamma.t,k,s) + not zero? res => + messagePrint("this is not a Jordan algebra")$OutputForm + return false + messagePrint("this is a Jordan algebra")$OutputForm + true + + + jacobiIdentity?() == + for i in 1..n repeat + for j in 1..n repeat + for k in 1..n repeat + for r in 1..n repeat + res := 0$R + for s in 1..n repeat + res := res + elt(gamma.r,i,j)*elt(gamma.s,j,k) +_ + elt(gamma.r,j,k)*elt(gamma.s,k,i) +_ + elt(gamma.r,k,i)*elt(gamma.s,i,j) + not zero? res => + messagePrint("Jacobi identity does not hold")$OutputForm + return false + messagePrint("Jacobi identity holds")$OutputForm + true + +@ +\section{package SCPKG StructuralConstantsPackage} +<>= +)abbrev package SCPKG StructuralConstantsPackage +++ Authors: J. Grabmeier +++ Date Created: 02 April 1992 +++ Date Last Updated: 14 April 1992 +++ Basic Operations: +++ Related Constructors: AlgebraPackage, AlgebraGivenByStructuralConstants +++ Also See: +++ AMS Classifications: +++ Keywords: structural constants +++ Reference: +++ Description: +++ StructuralConstantsPackage provides functions creating +++ structural constants from a multiplication tables or a basis +++ of a matrix algebra and other useful functions in this context. +StructuralConstantsPackage(R:Field): public == private where + + L ==> List + S ==> Symbol + FRAC ==> Fraction + POLY ==> Polynomial + V ==> Vector + M ==> Matrix + REC ==> Record(particular: Union(V R,"failed"),basis: List V R) + LSMP ==> LinearSystemMatrixPackage(R,V R,V R, M R) + + public ==> with + -- what we really want to have here is a matrix over + -- linear polynomials in the list of symbols, having arbitrary + -- coefficients from a ring extension of R, e.g. FRAC POLY R. + structuralConstants : (L S, M FRAC POLY R) -> V M FRAC POLY R + ++ structuralConstants(ls,mt) determines the structural constants + ++ of an algebra with generators ls and multiplication table mt, the + ++ entries of which must be given as linear polynomials in the + ++ indeterminates given by ls. The result is in particular useful + ++ as fourth argument for \spadtype{AlgebraGivenByStructuralConstants} + ++ and \spadtype{GenericNonAssociativeAlgebra}. + structuralConstants : (L S, M POLY R) -> V M POLY R + ++ structuralConstants(ls,mt) determines the structural constants + ++ of an algebra with generators ls and multiplication table mt, the + ++ entries of which must be given as linear polynomials in the + ++ indeterminates given by ls. The result is in particular useful + ++ as fourth argument for \spadtype{AlgebraGivenByStructuralConstants} + ++ and \spadtype{GenericNonAssociativeAlgebra}. + structuralConstants: L M R -> V M R + ++ structuralConstants(basis) takes the basis of a matrix + ++ algebra, e.g. the result of \spadfun{basisOfCentroid} and calculates + ++ the structural constants. + ++ Note, that the it is not checked, whether basis really is a + ++ basis of a matrix algebra. + coordinates: (M R, L M R) -> V R + ++ coordinates(a,[v1,...,vn]) returns the coordinates of \spad{a} + ++ with respect to the \spad{R}-module basis \spad{v1},...,\spad{vn}. + + private ==> add + + matrix2Vector: M R -> V R + matrix2Vector m == + lili : L L R := listOfLists m + --li : L R := reduce(concat, listOfLists m) + li : L R := reduce(concat, lili) + construct(li)$(V R) + + coordinates(x,b) == + m : NonNegativeInteger := (maxIndex b) :: NonNegativeInteger + n : NonNegativeInteger := nrows(b.1) * ncols(b.1) + transitionMatrix : Matrix R := new(n,m,0$R)$Matrix(R) + for i in 1..m repeat + setColumn_!(transitionMatrix,i,matrix2Vector(b.i)) + res : REC := solve(transitionMatrix,matrix2Vector(x))$LSMP + if (not every?(zero?$R,first res.basis)) then + error("coordinates: the second argument is linearly dependent") + (res.particular case "failed") => + error("coordinates: first argument is not in linear span of _ +second argument") + (res.particular) :: (Vector R) + + structuralConstants b == + --n := rank() + -- be careful with the possibility that b is not a basis + m : NonNegativeInteger := (maxIndex b) :: NonNegativeInteger + sC : Vector Matrix R := [new(m,m,0$R) for k in 1..m] + for i in 1..m repeat + for j in 1..m repeat + covec : Vector R := coordinates(b.i * b.j, b)$% + for k in 1..m repeat + setelt( sC.k, i, j, covec.k ) + sC + + structuralConstants(ls:L S, mt: M POLY R) == + nn := #(ls) + nrows(mt) ^= nn or ncols(mt) ^= nn => + error "structuralConstants: size of second argument does not _ +agree with number of generators" + gamma : L M POLY R := [] + lscopy : L S := copy ls + while not null lscopy repeat + mat : M POLY R := new(nn,nn,0) + s : S := first lscopy + for i in 1..nn repeat + for j in 1..nn repeat + p := qelt(mt,i,j) + totalDegree(p,ls) > 1 => + error "structuralConstants: entries of second argument _ +must be linear polynomials in the generators" + if (c := coefficient(p, s, 1) ) ^= 0 then qsetelt_!(mat,i,j,c) + gamma := cons(mat, gamma) + lscopy := rest lscopy + vector reverse gamma + + structuralConstants(ls:L S, mt: M FRAC POLY R) == + nn := #(ls) + nrows(mt) ^= nn or ncols(mt) ^= nn => + error "structuralConstants: size of second argument does not _ +agree with number of generators" + gamma : L M FRAC(POLY R) := [] + lscopy : L S := copy ls + while not null lscopy repeat + mat : M FRAC(POLY R) := new(nn,nn,0) + s : S := first lscopy + for i in 1..nn repeat + for j in 1..nn repeat + r := qelt(mt,i,j) + q := denom(r) + totalDegree(q,ls) ^= 0 => + error "structuralConstants: entries of second argument _ +must be (linear) polynomials in the generators" + p := numer(r) + totalDegree(p,ls) > 1 => + error "structuralConstants: entries of second argument _ +must be linear polynomials in the generators" + if (c := coefficient(p, s, 1) ) ^= 0 then qsetelt_!(mat,i,j,c/q) + gamma := cons(mat, gamma) + lscopy := rest lscopy + vector reverse gamma + +@ +\section{package ALGPKG AlgebraPackage} +<>= +)abbrev package ALGPKG AlgebraPackage +++ Authors: J. Grabmeier, R. Wisbauer +++ Date Created: 04 March 1991 +++ Date Last Updated: 04 April 1992 +++ Basic Operations: +++ Related Constructors: +++ Also See: +++ AMS Classifications: +++ Keywords: rank, nucleus, nucloid, structural constants +++ Reference: +++ R.S. Pierce: Associative Algebras +++ Graduate Texts in Mathematics 88 +++ Springer-Verlag, Heidelberg, 1982, ISBN 0-387-90693-2 +++ +++ R.D. Schafer: An Introduction to Nonassociative Algebras +++ Academic Press, New York, 1966 +++ +++ A. Woerz-Busekros: Algebra in Genetics +++ Lectures Notes in Biomathematics 36, +++ Springer-Verlag, Heidelberg, 1980 +++ Description: +++ AlgebraPackage assembles a variety of useful functions for +++ general algebras. +AlgebraPackage(R:IntegralDomain, A: FramedNonAssociativeAlgebra(R)): _ + public == private where + + V ==> Vector + M ==> Matrix + I ==> Integer + NNI ==> NonNegativeInteger + REC ==> Record(particular: Union(V R,"failed"),basis: List V R) + LSMP ==> LinearSystemMatrixPackage(R,V R,V R, M R) + + public ==> with + + leftRank: A -> NonNegativeInteger + ++ leftRank(x) determines the number of linearly independent elements + ++ in \spad{x*b1},...,\spad{x*bn}, + ++ where \spad{b=[b1,...,bn]} is a basis. + rightRank: A -> NonNegativeInteger + ++ rightRank(x) determines the number of linearly independent elements + ++ in \spad{b1*x},...,\spad{bn*x}, + ++ where \spad{b=[b1,...,bn]} is a basis. + doubleRank: A -> NonNegativeInteger + ++ doubleRank(x) determines the number of linearly + ++ independent elements + ++ in \spad{b1*x},...,\spad{x*bn}, + ++ where \spad{b=[b1,...,bn]} is a basis. + weakBiRank: A -> NonNegativeInteger + ++ weakBiRank(x) determines the number of + ++ linearly independent elements + ++ in the \spad{bi*x*bj}, \spad{i,j=1,...,n}, + ++ where \spad{b=[b1,...,bn]} is a basis. + biRank: A -> NonNegativeInteger + ++ biRank(x) determines the number of linearly independent elements + ++ in \spad{x}, \spad{x*bi}, \spad{bi*x}, \spad{bi*x*bj}, + ++ \spad{i,j=1,...,n}, + ++ where \spad{b=[b1,...,bn]} is a basis. + ++ Note: if \spad{A} has a unit, + ++ then \spadfunFrom{doubleRank}{AlgebraPackage}, + ++ \spadfunFrom{weakBiRank}{AlgebraPackage} + ++ and \spadfunFrom{biRank}{AlgebraPackage} coincide. + basisOfCommutingElements: () -> List A + ++ basisOfCommutingElements() returns a basis of the space of + ++ all x of \spad{A} satisfying \spad{0 = commutator(x,a)} for all + ++ \spad{a} in \spad{A}. + basisOfLeftAnnihilator: A -> List A + ++ basisOfLeftAnnihilator(a) returns a basis of the space of + ++ all x of \spad{A} satisfying \spad{0 = x*a}. + basisOfRightAnnihilator: A -> List A + ++ basisOfRightAnnihilator(a) returns a basis of the space of + ++ all x of \spad{A} satisfying \spad{0 = a*x}. + basisOfLeftNucleus: () -> List A + ++ basisOfLeftNucleus() returns a basis of the space of + ++ all x of \spad{A} satisfying \spad{0 = associator(x,a,b)} + ++ for all \spad{a},b in \spad{A}. + basisOfRightNucleus: () -> List A + ++ basisOfRightNucleus() returns a basis of the space of + ++ all x of \spad{A} satisfying \spad{0 = associator(a,b,x)} + ++ for all \spad{a},b in \spad{A}. + basisOfMiddleNucleus: () -> List A + ++ basisOfMiddleNucleus() returns a basis of the space of + ++ all x of \spad{A} satisfying \spad{0 = associator(a,x,b)} + ++ for all \spad{a},b in \spad{A}. + basisOfNucleus: () -> List A + ++ basisOfNucleus() returns a basis of the space of all x of \spad{A} satisfying + ++ \spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} + ++ for all \spad{a},b in \spad{A}. + basisOfCenter: () -> List A + ++ basisOfCenter() returns a basis of the space of + ++ all x of \spad{A} satisfying \spad{commutator(x,a) = 0} and + ++ \spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} + ++ for all \spad{a},b in \spad{A}. + basisOfLeftNucloid:()-> List Matrix R + ++ basisOfLeftNucloid() returns a basis of the space of + ++ endomorphisms of \spad{A} as right module. + ++ Note: left nucloid coincides with left nucleus if \spad{A} has a unit. + basisOfRightNucloid:()-> List Matrix R + ++ basisOfRightNucloid() returns a basis of the space of + ++ endomorphisms of \spad{A} as left module. + ++ Note: right nucloid coincides with right nucleus if \spad{A} has a unit. + basisOfCentroid:()-> List Matrix R + ++ basisOfCentroid() returns a basis of the centroid, i.e. the + ++ endomorphism ring of \spad{A} considered as \spad{(A,A)}-bimodule. + radicalOfLeftTraceForm: () -> List A + ++ radicalOfLeftTraceForm() returns basis for null space of + ++ \spad{leftTraceMatrix()}, if the algebra is + ++ associative, alternative or a Jordan algebra, then this + ++ space equals the radical (maximal nil ideal) of the algebra. + if R has EuclideanDomain then + basis : V A -> V A + ++ basis(va) selects a basis from the elements of va. + + + private ==> add + + -- constants + + n : PositiveInteger := rank()$A + n2 : PositiveInteger := n*n + n3 : PositiveInteger := n*n2 + gamma : Vector Matrix R := structuralConstants()$A + + + -- local functions + + convVM : Vector R -> Matrix R + -- converts n2-vector to (n,n)-matrix row by row + convMV : Matrix R -> Vector R + -- converts n-square matrix to n2-vector row by row + convVM v == + cond : Matrix(R) := new(n,n,0$R)$M(R) + z : Integer := 0 + for i in 1..n repeat + for j in 1..n repeat + z := z+1 + setelt(cond,i,j,v.z) + cond + + + -- convMV m == + -- vec : Vector(R) := new(n*n,0$R) + -- z : Integer := 0 + -- for i in 1..n repeat + -- for j in 1..n repeat + -- z := z+1 + -- setelt(vec,z,elt(m,i,j)) + -- vec + + + radicalOfLeftTraceForm() == + ma : M R := leftTraceMatrix()$A + map(represents, nullSpace ma)$ListFunctions2(Vector R, A) + + + basisOfLeftAnnihilator a == + ca : M R := transpose (coordinates(a) :: M R) + cond : M R := reduce(vertConcat$(M R), + [ca*transpose(gamma.i) for i in 1..#gamma]) + map(represents, nullSpace cond)$ListFunctions2(Vector R, A) + + basisOfRightAnnihilator a == + ca : M R := transpose (coordinates(a) :: M R) + cond : M R := reduce(vertConcat$(M R), + [ca*(gamma.i) for i in 1..#gamma]) + map(represents, nullSpace cond)$ListFunctions2(Vector R, A) + + basisOfLeftNucloid() == + cond : Matrix(R) := new(n3,n2,0$R)$M(R) + condo: Matrix(R) := new(n3,n2,0$R)$M(R) + z : Integer := 0 + for i in 1..n repeat + for j in 1..n repeat + r1 : Integer := 0 + for k in 1..n repeat + z := z + 1 + -- z equals (i-1)*n*n+(j-1)*n+k (loop-invariant) + r2 : Integer := i + for r in 1..n repeat + r1 := r1 + 1 + -- here r1 equals (k-1)*n+r (loop-invariant) + setelt(cond,z,r1,elt(gamma.r,i,j)) + -- here r2 equals (r-1)*n+i (loop-invariant) + setelt(condo,z,r2,-elt(gamma.k,r,j)) + r2 := r2 + n + [convVM(sol) for sol in nullSpace(cond+condo)] + + basisOfCommutingElements() == + --gamma1 := first gamma + --gamma1 := gamma1 - transpose gamma1 + --cond : Matrix(R) := gamma1 :: Matrix(R) + --for i in 2..n repeat + -- gammak := gamma.i + -- gammak := gammak - transpose gammak + -- cond := vertConcat(cond, gammak :: Matrix(R))$Matrix(R) + --map(represents, nullSpace cond)$ListFunctions2(Vector R, A) + + cond : M R := reduce(vertConcat$(M R), + [(gam := gamma.i) - transpose gam for i in 1..#gamma]) + map(represents, nullSpace cond)$ListFunctions2(Vector R, A) + + basisOfLeftNucleus() == + condi: Matrix(R) := new(n3,n,0$R)$Matrix(R) + z : Integer := 0 + for k in 1..n repeat + for j in 1..n repeat + for s in 1..n repeat + z := z+1 + for i in 1..n repeat + entry : R := 0 + for l in 1..n repeat + entry := entry+elt(gamma.l,j,k)*elt(gamma.s,i,l)_ + -elt(gamma.l,i,j)*elt(gamma.s,l,k) + setelt(condi,z,i,entry)$Matrix(R) + map(represents, nullSpace condi)$ListFunctions2(Vector R,A) + + basisOfRightNucleus() == + condo : Matrix(R) := new(n3,n,0$R)$Matrix(R) + z : Integer := 0 + for k in 1..n repeat + for j in 1..n repeat + for s in 1..n repeat + z := z+1 + for i in 1..n repeat + entry : R := 0 + for l in 1..n repeat + entry := entry+elt(gamma.l,k,i)*elt(gamma.s,j,l) _ + -elt(gamma.l,j,k)*elt(gamma.s,l,i) + setelt(condo,z,i,entry)$Matrix(R) + map(represents, nullSpace condo)$ListFunctions2(Vector R,A) + + basisOfMiddleNucleus() == + conda : Matrix(R) := new(n3,n,0$R)$Matrix(R) + z : Integer := 0 + for k in 1..n repeat + for j in 1..n repeat + for s in 1..n repeat + z := z+1 + for i in 1..n repeat + entry : R := 0 + for l in 1..n repeat + entry := entry+elt(gamma.l,j,i)*elt(gamma.s,l,k) + -elt(gamma.l,i,k)*elt(gamma.s,j,l) + setelt(conda,z,i,entry)$Matrix(R) + map(represents, nullSpace conda)$ListFunctions2(Vector R,A) + + + basisOfNucleus() == + condi: Matrix(R) := new(3*n3,n,0$R)$Matrix(R) + z : Integer := 0 + u : Integer := n3 + w : Integer := 2*n3 + for k in 1..n repeat + for j in 1..n repeat + for s in 1..n repeat + z := z+1 + u := u+1 + w := w+1 + for i in 1..n repeat + entry : R := 0 + enter : R := 0 + ent : R := 0 + for l in 1..n repeat + entry := entry + elt(gamma.l,j,k)*elt(gamma.s,i,l) _ + - elt(gamma.l,i,j)*elt(gamma.s,l,k) + enter := enter + elt(gamma.l,k,i)*elt(gamma.s,j,l) _ + - elt(gamma.l,j,k)*elt(gamma.s,l,i) + ent := ent + elt(gamma.l,j,k)*elt(gamma.s,i,l) _ + - elt(gamma.l,j,i)*elt(gamma.s,l,k) + setelt(condi,z,i,entry)$Matrix(R) + setelt(condi,u,i,enter)$Matrix(R) + setelt(condi,w,i,ent)$Matrix(R) + map(represents, nullSpace condi)$ListFunctions2(Vector R,A) + + basisOfCenter() == + gamma1 := first gamma + gamma1 := gamma1 - transpose gamma1 + cond : Matrix(R) := gamma1 :: Matrix(R) + for i in 2..n repeat + gammak := gamma.i + gammak := gammak - transpose gammak + cond := vertConcat(cond, gammak :: Matrix(R))$Matrix(R) + B := cond :: Matrix(R) + condi: Matrix(R) := new(2*n3,n,0$R)$Matrix(R) + z : Integer := 0 + u : Integer := n3 + for k in 1..n repeat + for j in 1..n repeat + for s in 1..n repeat + z := z+1 + u := u+1 + for i in 1..n repeat + entry : R := 0 + enter : R := 0 + for l in 1..n repeat + entry := entry + elt(gamma.l,j,k)*elt(gamma.s,i,l) _ + - elt(gamma.l,i,j)*elt(gamma.s,l,k) + enter := enter + elt(gamma.l,k,i)*elt(gamma.s,j,l) _ + - elt(gamma.l,j,k)*elt(gamma.s,l,i) + setelt(condi,z,i,entry)$Matrix(R) + setelt(condi,u,i,enter)$Matrix(R) + D := vertConcat(condi,B)$Matrix(R) + map(represents, nullSpace D)$ListFunctions2(Vector R, A) + + basisOfRightNucloid() == + cond : Matrix(R) := new(n3,n2,0$R)$M(R) + condo: Matrix(R) := new(n3,n2,0$R)$M(R) + z : Integer := 0 + for i in 1..n repeat + for j in 1..n repeat + r1 : Integer := 0 + for k in 1..n repeat + z := z + 1 + -- z equals (i-1)*n*n+(j-1)*n+k (loop-invariant) + r2 : Integer := i + for r in 1..n repeat + r1 := r1 + 1 + -- here r1 equals (k-1)*n+r (loop-invariant) + setelt(cond,z,r1,elt(gamma.r,j,i)) + -- here r2 equals (r-1)*n+i (loop-invariant) + setelt(condo,z,r2,-elt(gamma.k,j,r)) + r2 := r2 + n + [convVM(sol) for sol in nullSpace(cond+condo)] + + basisOfCentroid() == + cond : Matrix(R) := new(2*n3,n2,0$R)$M(R) + condo: Matrix(R) := new(2*n3,n2,0$R)$M(R) + z : Integer := 0 + u : Integer := n3 + for i in 1..n repeat + for j in 1..n repeat + r1 : Integer := 0 + for k in 1..n repeat + z := z + 1 + u := u + 1 + -- z equals (i-1)*n*n+(j-1)*n+k (loop-invariant) + -- u equals n**3 + (i-1)*n*n+(j-1)*n+k (loop-invariant) + r2 : Integer := i + for r in 1..n repeat + r1 := r1 + 1 + -- here r1 equals (k-1)*n+r (loop-invariant) + setelt(cond,z,r1,elt(gamma.r,i,j)) + setelt(cond,u,r1,elt(gamma.r,j,i)) + -- here r2 equals (r-1)*n+i (loop-invariant) + setelt(condo,z,r2,-elt(gamma.k,r,j)) + setelt(condo,u,r2,-elt(gamma.k,j,r)) + r2 := r2 + n + [convVM(sol) for sol in nullSpace(cond+condo)] + + + doubleRank x == + cond : Matrix(R) := new(2*n,n,0$R) + for k in 1..n repeat + z : Integer := 0 + u : Integer := n + for j in 1..n repeat + z := z+1 + u := u+1 + entry : R := 0 + enter : R := 0 + for i in 1..n repeat + entry := entry + elt(x,i)*elt(gamma.k,j,i) + enter := enter + elt(x,i)*elt(gamma.k,i,j) + setelt(cond,z,k,entry)$Matrix(R) + setelt(cond,u,k,enter)$Matrix(R) + rank(cond)$(M R) + + weakBiRank(x) == + cond : Matrix(R) := new(n2,n,0$R)$Matrix(R) + z : Integer := 0 + for i in 1..n repeat + for j in 1..n repeat + z := z+1 + for k in 1..n repeat + entry : R := 0 + for l in 1..n repeat + for s in 1..n repeat + entry:=entry+elt(x,l)*elt(gamma.s,i,l)*elt(gamma.k,s,j) + setelt(cond,z,k,entry)$Matrix(R) + rank(cond)$(M R) + + biRank(x) == + cond : Matrix(R) := new(n2+2*n+1,n,0$R)$Matrix(R) + z : Integer := 0 + for j in 1..n repeat + for i in 1..n repeat + z := z+1 + for k in 1..n repeat + entry : R := 0 + for l in 1..n repeat + for s in 1..n repeat + entry:=entry+elt(x,l)*elt(gamma.s,i,l)*elt(gamma.k,s,j) + setelt(cond,z,k,entry)$Matrix(R) + u : Integer := n*n + w : Integer := n*(n+1) + c := n2 + 2*n + 1 + for j in 1..n repeat + u := u+1 + w := w+1 + for k in 1..n repeat + entry : R := 0 + enter : R := 0 + for i in 1..n repeat + entry := entry + elt(x,i)*elt(gamma.k,j,i) + enter := enter + elt(x,i)*elt(gamma.k,i,j) + setelt(cond,u,k,entry)$Matrix(R) + setelt(cond,w,k,enter)$Matrix(R) + setelt(cond,c,j, elt(x,j)) + rank(cond)$(M R) + + leftRank x == + cond : Matrix(R) := new(n,n,0$R) + for k in 1..n repeat + for j in 1..n repeat + entry : R := 0 + for i in 1..n repeat + entry := entry + elt(x,i)*elt(gamma.k,i,j) + setelt(cond,j,k,entry)$Matrix(R) + rank(cond)$(M R) + + rightRank x == + cond : Matrix(R) := new(n,n,0$R) + for k in 1..n repeat + for j in 1..n repeat + entry : R := 0 + for i in 1..n repeat + entry := entry + elt(x,i)*elt(gamma.k,j,i) + setelt(cond,j,k,entry)$Matrix(R) + rank(cond)$(M R) + + + if R has EuclideanDomain then + basis va == + v : V A := remove(zero?, va)$(V A) + v : V A := removeDuplicates v + empty? v => [0$A] + m : Matrix R := coerce(coordinates(v.1))$(Matrix R) + for i in 2..maxIndex v repeat + m := horizConcat(m,coerce(coordinates(v.i))$(Matrix R) ) + m := rowEchelon m + lj : List Integer := [] + h : Integer := 1 + mRI : Integer := maxRowIndex m + mCI : Integer := maxColIndex m + finished? : Boolean := false + j : Integer := 1 + while not finished? repeat + not zero? m(h,j) => -- corner found + lj := cons(j,lj) + h := mRI + while zero? m(h,j) repeat h := h-1 + finished? := (h = mRI) + if not finished? then h := h+1 + if j < mCI then + j := j + 1 + else + finished? := true + [v.j for j in reverse lj] + +@ +\section{package FRNAAF2 FramedNonAssociativeAlgebraFunctions2} +<>= +)abbrev package FRNAAF2 FramedNonAssociativeAlgebraFunctions2 +++ Author: Johannes Grabmeier +++ Date Created: 28 February 1992 +++ Date Last Updated: 28 February 1992 +++ Basic Operations: map +++ Related Constructors: +++ Also See: +++ AMS Classifications: +++ Keywords: non-associative algebra +++ References: +++ Description: +++ FramedNonAssociativeAlgebraFunctions2 implements functions between +++ two framed non associative algebra domains defined over different rings. +++ The function map is used to coerce between algebras over different +++ domains having the same structural constants. + +FramedNonAssociativeAlgebraFunctions2(AR,R,AS,S) : Exports == + Implementation where + R : CommutativeRing + S : CommutativeRing + AR : FramedNonAssociativeAlgebra R + AS : FramedNonAssociativeAlgebra S + V ==> Vector + Exports ==> with + map: (R -> S, AR) -> AS + ++ map(f,u) maps f onto the coordinates of u to get an element + ++ in \spad{AS} via identification of the basis of \spad{AR} + ++ as beginning part of the basis of \spad{AS}. + Implementation ==> add + map(fn : R -> S, u : AR): AS == + rank()$AR > rank()$AS => error("map: ranks of algebras do not fit") + vr : V R := coordinates u + vs : V S := map(fn,vr)$VectorFunctions2(R,S) +@ +This line used to read: +\begin{verbatim} + rank()$AR = rank()$AR => represents(vs)$AS +\end{verbatim} +but the test is clearly always true and cannot be what was intended. +Gregory Vanuxem supplied the fix below. +<>= + rank()$AR = rank()$AS => represents(vs)$AS + ba := basis()$AS + represents(vs,[ba.i for i in 1..rank()$AR]) + +@ +\section{License} +<>= +--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +@ +<<*>>= +<> + +<> +<> +<> +<> +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} -- cgit v1.2.3