From b107db3eaba8069a8a47f2dc3f39b9858e954efa Mon Sep 17 00:00:00 2001 From: dos-reis Date: Wed, 7 Apr 2010 21:02:55 +0000 Subject: * algebra/boolean.spad.pamphlet (isAtom$PropositionalFormula): Rename from isTerm. (simplify$PropositionalFormulaFunctions1): New. --- src/algebra/boolean.spad.pamphlet | 59 +++++++++++++++++++++++++++++++++++---- 1 file changed, 53 insertions(+), 6 deletions(-) (limited to 'src/algebra/boolean.spad.pamphlet') diff --git a/src/algebra/boolean.spad.pamphlet b/src/algebra/boolean.spad.pamphlet index d4a2f65d..b556b37b 100644 --- a/src/algebra/boolean.spad.pamphlet +++ b/src/algebra/boolean.spad.pamphlet @@ -59,8 +59,8 @@ PropositionalLogic(): Category == Join(BooleanLogic,SetCategory) with ++ over a term domain, that itself belongs to PropositionalLogic PropositionalFormula(T: SetCategory): Public == Private where Public == Join(PropositionalLogic, CoercibleFrom T) with - isTerm : % -> Maybe T - ++ \spad{isTerm f} returns a value \spad{v} such that + isAtom : % -> Maybe T + ++ \spad{isAtom f} returns a value \spad{v} such that ++ \spad{v case T} holds if the formula \spad{f} is a term. isNot : % -> Maybe % @@ -137,7 +137,7 @@ PropositionalFormula(T: SetCategory): Public == Private where equiv(p,q) == per kernel(operator(EQV, 2), [p, q], 1 + max(level p, level q)) - isTerm f == + isAtom f == f' := rep f f' case T => just(f'@T) nothing @@ -273,27 +273,74 @@ PropositionalFormulaFunctions1(T): Public == Private where terms: PropositionalFormula T -> Set T ++ \spad{terms f} ++ returns the set of terms appearing in ++ the formula \spad{f}. + simplify: PropositionalFormula T -> PropositionalFormula T + ++ \spad{simplify f} returns a formula logically equivalent + ++ to \spad{f} where obvious tautologies have been removed. Private == add macro F == PropositionalFormula T inline Pair(F,F) + dual f == f = true$F => false$F f = false$F => true$F - isTerm f case T => f + isAtom f case T => f (f1 := isNot f) case F => not dual f1 (f2 := isAnd f) case Pair(F,F) => disjunction(dual first f2, dual second f2) (f2 := isOr f) case Pair(F,F) => conjunction(dual first f2, dual second f2) error "formula contains `equiv' or `implies'" + terms f == - (t := isTerm f) case T => { t } + (t := isAtom f) case T => { t } (f1 := isNot f) case F => terms f1 (f2 := isAnd f) case Pair(F,F) => union(terms first f2, terms second f2) (f2 := isOr f) case Pair(F,F) => union(terms first f2, terms second f2) empty()$Set(T) + + -- one-step simplification helper function + simplifyOneStep(f: F): F == + (f1 := isNot f) case F => + f1 = true$F => false$F + f1 = false$F => true$F + (f1' := isNot f1) case F => f1' -- assume classical logic + f + (f2 := isAnd f) case Pair(F,F) => + first f2 = false$F or second f2 = false$F => false$F + first f2 = true$F => second f2 + second f2 = true$F => first f2 + f + (f2 := isOr f) case Pair(F,F) => + first f2 = false$F => second f2 + second f2 = false$F => first f2 + first f2 = true$F or second f2 = true$F => true$F + f + (f2 := isImplies f) case Pair(F,F) => + first f2 = false$F or second f2 = true$F => true$F + first f2 = true$F => second f2 + second f2 = false$F => not first f2 + f + (f2 := isEquiv f) case Pair(F,F) => + first f2 = true$F => second f2 + second f2 = true$F => first f2 + first f2 = false$F => not second f2 + second f2 = false$F => not first f2 + f + f + + simplify f == + (f1 := isNot f) case F => simplifyOneStep(not simplify f1) + (f2 := isAnd f) case Pair(F,F) => + simplifyOneStep(conjunction(simplify first f2, simplify second f2)) + (f2 := isOr f) case Pair(F,F) => + simplifyOneStep(disjunction(simplify first f2, simplify second f2)) + (f2 := isImplies f) case Pair(F,F) => + simplifyOneStep(implies(simplify first f2, simplify second f2)) + (f2 := isEquiv f) case Pair(F,F) => + simplifyOneStep(equiv(simplify first f2, simplify second f2)) + f @ <>= @@ -318,7 +365,7 @@ PropositionalFormulaFunctions2(S,T): Public == Private where map(f,x) == x = true$FS => true$FT x = false$FS => false$FT - (t := isTerm x) case S => f(t)::FT + (t := isAtom x) case S => f(t)::FT (f1 := isNot x) case FS => not map(f,f1) (f2 := isAnd x) case Pair(FS,FS) => conjunction(map(f,first f2), map(f,second f2)) -- cgit v1.2.3