diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/ChangeLog | 4 | ||||
-rw-r--r-- | src/algebra/odeef.spad.pamphlet | 37 | ||||
-rw-r--r-- | src/input/kernel.input.pamphlet | 2 |
3 files changed, 31 insertions, 12 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index c17550cc..5146627c 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,3 +1,7 @@ +2009-07-16 Gabriel Dos Reis <gdr@cs.tamu.edu> + + * algebra/odeef.spad.pamphlet (ElementaryFunctionODESolver): Tidy. + 2009-07-13 Gabriel Dos Reis <gdr@cs.tamu.edu> * interp/g-opt.boot (optCatch): Lift nested functions. diff --git a/src/algebra/odeef.spad.pamphlet b/src/algebra/odeef.spad.pamphlet index 5598124b..37f26e8e 100644 --- a/src/algebra/odeef.spad.pamphlet +++ b/src/algebra/odeef.spad.pamphlet @@ -434,7 +434,7 @@ ElementaryFunctionODESolver(R, F): Exports == Implementation where getfreelincoeff1: (F, K, List F) -> F getlincoeff : (F, K) -> F getcoeff : (F, K) -> UU - parseODE : (F, OP, SY) -> Union(LEQ, NLQ) + parseODE : (F, OP, SY) -> Union(LEQ, NLQ, "failed") parseLODE : (F, List K, UP, SY) -> LEQ parseSYS : (List F, List OP, SY) -> Union(SYS, "failed") parseSYSeq : (F, List K, List K, List F, SY) -> Union(ROW, "failed") @@ -462,7 +462,9 @@ ElementaryFunctionODESolver(R, F): Exports == Implementation where solve(diffeq:F, y:OP, center:EQ, y0:List F) == a := rhs center kx:K := kernel(x := retract(lhs(center))@SY) - (ur := parseODE(diffeq, y, x)) case NLQ => + ur := parseODE(diffeq, y, x) + ur case "failed" => "failed" + ur case NLQ => not one?(#y0) => error "solve: more than one initial condition!" rc := ur::NLQ (u := solve(rc.dx, rc.dy, y, x)) case "failed" => "failed" @@ -483,7 +485,9 @@ ElementaryFunctionODESolver(R, F): Exports == Implementation where error "solve: not a first order linear system" solve(diffeq:F, y:OP, x:SY) == - (u := parseODE(diffeq, y, x)) case NLQ => + u := parseODE(diffeq, y, x) + u case "failed" => "failed" + u case NLQ => rc := u::NLQ (uu := solve(rc.dx, rc.dy, y, x)) case "failed" => "failed" uu::F @@ -527,28 +531,39 @@ ElementaryFunctionODESolver(R, F): Exports == Implementation where eq := eq - ci * y::F [n, v, -eq] --- returns either [p, g] where the equation (diffeq) is of the form p(D)(y) = g --- or [p, q] such that the equation (diffeq) is of the form p dx + q dy = 0 + -- returns either + -- [p, g] where the equation (diffeq) is of the form + -- p(D)(y) = g + -- or + -- [p, q] such that the equation (diffeq) is of the form + -- p dx + q dy = 0 parseODE(diffeq, y, x) == - f := y(x::F) + -- FIXME: Assume we don't have a parametric equation. + f := y(x::F) l:List(K) := [retract(f)@K] n:N := 2 for k in varselect(kernels diffeq, x) | is?(k, OPDIFF) repeat if (m := height k) > n then n := m n := (n - 2)::N --- build a list of kernels in the order [y^(n)(x),...,y''(x),y'(x),y(x)] + -- build a list of kernels in the order [y^(n)(x),...,y''(x),y'(x),y(x)] for i in 1..n repeat l := concat(retract(f := differentiate(f, x))@K, l) + -- Determine the order of the equation and its leading coefficient k:K -- #$^#& compiler requires this line and the next one too... c:F - while not(empty? l) and zero?(c := getlincoeff(diffeq, k := first l)) - repeat l := rest l - empty? l or empty? rest l => error "parseODE: equation has order 0" + while not empty? l repeat + c' := getcoeff(diffeq, k := first l) + c' case "failed" => return "failed" + c := c'::F + not zero? c => break + l := rest l + empty? l or empty? rest l => "failed" -- maybe a functional equation? diffeq := diffeq - c * (k::F) ny := name y l := rest l height(k) > 3 => parseLODE(diffeq, l, monomial(c, #l), ny) - (u := getcoeff(diffeq, k := first l)) case "failed" => [diffeq, c] + u := getcoeff(diffeq, k := first l) + u case "failed" => [diffeq, c] eqrhs := (d := u::F) * (k::F) - diffeq freeOf?(eqrhs, ny) and freeOf?(c, ny) and freeOf?(d, ny) => [monomial(c, 1) + d::UP, eqrhs] diff --git a/src/input/kernel.input.pamphlet b/src/input/kernel.input.pamphlet index 3652da8a..25e4007a 100644 --- a/src/input/kernel.input.pamphlet +++ b/src/input/kernel.input.pamphlet @@ -27,7 +27,7 @@ height mainKernel(sin x) height mainKernel(sin cos x) height mainKernel(sin cos (tan x + sin x)) operator mainKernel(sin cos (tan x + sin x)) -name mainKernel(sin cos (tan x + sin x)) +name operator mainKernel(sin cos (tan x + sin x)) f := operator 'f e := f(x, y, 10) is?(e, f) |